

ibm.com/redbooks

WebSphere and .Net
Interoperability
Using Web Services

Peter Swithinbank
Francesca Gigante

Hedley Proctor
Mahendra Rathore

William Widjaja

Examples and guidance for building
interoperable Web services

Roadmap to Web services
specifications

Using Service-Oriented
patterns

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere and .Net Interoperability Using Web
Services

June 2005

International Technical Support Organization

SG24-6395-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2005)

This edition applies to WebSphere Studio Application Developer V5.1.2 running on Microsoft
Windows XP Pro, WebSphere Application Server V5.1.1 with DB/2 8.1 running on Microsoft
Server 2003, Microsoft.Net Framework 1.1, and Microsoft IIS V6.0 running on Microsoft Server
2003.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xiii
Become a published author . xv
Comments welcome. xv

Chapter 1. Introduction . 1
1.1 Background of this book . 2

1.1.1 The scenario . 2
1.1.2 Use of Web services . 3
1.1.3 Other approaches to interoperability . 3
1.1.4 WS-I . 4
1.1.5 Audience . 5
1.1.6 Terminology . 6

Part 1. Introduction to Web services . 9

Chapter 2. SOAP primer . 11
2.1 What is SOAP? . 12
2.2 SOAP components . 12
2.3 What is in a SOAP message? . 14

2.3.1 Headers. 14
2.3.2 Body . 16
2.3.3 Fault . 16

2.4 Message styles . 18
2.4.1 RPC-Style . 18
2.4.2 Document-Style. 19
2.4.3 Document/Wrapped . 20

2.5 SOAP interaction styles. 21
2.5.1 Request-response. 21
2.5.2 One-way . 22

2.6 SOAP implementations over Http:. 22
2.6.1 Microsoft .Net SOAP request over Http . 22
2.6.2 IBM WebSphere Application Server SOAP request over Http: 23

2.7 Summary: Salient interoperability features of SOAP. 24

Chapter 3. WSDL primer . 27

© Copyright IBM Corp. 2005. All rights reserved. iii

3.1 Structure of WSDL definitions . 28
3.2 Examples of WSDL definitions . 30

3.2.1 Document/Literal Style . 30
3.2.2 RPC/Literal Style. 33

3.3 Future considerations . 35
3.4 Summary: salient interoperability features of WSDL. 36

Chapter 4. Web services primer. 39
4.1 Web services concepts . 40

4.1.1 What is a Web service? . 41
4.1.2 Web services technologies . 43
4.1.3 Web service properties . 43

4.2 Web services and component architectures . 45
4.2.1 Choosing between Web services and software components 46

4.3 Service-Oriented Architecture . 50
4.3.1 Components of a Service-Oriented Architecture. 51
4.3.2 Services and Web services. 54

4.4 Web services and the Enterprise Service Bus . 58
4.4.1 Transparency . 60
4.4.2 Interoperability. 61
4.4.3 Unified service discovery and addressing. 61
4.4.4 Coexistence . 62
4.4.5 Single point of control . 62
4.4.6 Security . 63
4.4.7 Robustness . 63
4.4.8 Scalability . 64
4.4.9 Problem determination . 65
4.4.10 Conclusions: Web services, the ESB and service buses 65

4.5 Summary . 66

Part 2. Web services interoperability . 67

Chapter 5. Business scenarios . 69
5.1 Business scenarios overview . 70
5.2 Mergers and Acquisitions . 71

5.2.1 Business goals . 71
5.2.2 Solution context. 72
5.2.3 Current IT infrastructure . 74
5.2.4 Technical constraints . 76
5.2.5 Solution level design . 77
5.2.6 Technical approach. 78
5.2.7 Target IT infrastructure . 81

5.3 External claims assessor management. 83
5.3.1 Business goals . 83

iv WebSphere and .Net Interoperability Using Web Services

5.3.2 Solution context. 84
5.3.3 Current IT infrastructure . 84
5.3.4 Technical constraints . 85
5.3.5 Solution level design . 85
5.3.6 Technical approach. 88
5.3.7 Target IT infrastructure . 90

5.4 Summary . 92

Chapter 6. Interoperability patterns. 93
6.1 The Patterns for e-business layered asset model 94
6.2 SOA approach and Patterns for e-business . 95

6.2.1 Business::Self-Service pattern . 96
6.2.2 Extended Enterprise business pattern . 98
6.2.3 Discussion of patterns and Web services . 98

6.3 Applying Interoperability patterns . 102
6.3.1 Mergers and Acquisitions scenario . 103

6.4 Summary . 111
6.5 Where to find more information . 112

Chapter 7. Web services roadmap . 113
7.1 Introduction . 114
7.2 List of Web services specifications . 114
7.3 Summary of the Web services architecture stack 120

7.3.1 Foundations . 121
7.3.2 Messaging. 124
7.3.3 Security . 129
7.3.4 Transacted . 132
7.3.5 Meta-data . 135
7.3.6 Resources . 137
7.3.7 Composition . 138
7.3.8 Management . 140
7.3.9 Provisioning. 143
7.3.10 WS-I . 143

7.4 Summary . 143

Chapter 8. Web service specifications . 145
8.1 Web service Interoperability Organization (WS-I) 146
8.2 WS-I Basic Profile 1.0 . 146

8.2.1 Basic Profile 1.0 for WebSphere . 148
8.2.2 Basic Profile 1.0 for Microsoft .Net . 149
8.2.3 Summary. 155

8.3 Interoperability standards: addressing . 155
8.3.1 Insurance example . 155
8.3.2 Summary. 158

 Contents v

8.4 Security . 158
8.4.1 Why do we need more security specifications? 158
8.4.2 WS-Security 2004 . 161
8.4.3 WS-I Security Profile . 170
8.4.4 Summary. 176

8.5 WS-Coordination . 177
8.6 WS-Transactions. 179

8.6.1 WS-Transaction in a WebSphere environment 181
8.6.2 WS transaction in a Microsoft .Net environment 182

8.7 Reliable messaging . 182
8.7.1 What is WS-ReliableMessaging? . 183
8.7.2 The three legged handshake protocol. 183
8.7.3 WS-ReliableMessaging Protocol. 184
8.7.4 Reliable messaging requirements. 186

8.8 SOAP/JMS and SOAP/MQ . 188
8.8.1 Interoperability of SOAP/JMS and SOAP/MQ. 189

Chapter 9. Web services in Microsoft .Net and WebSphere 191
9.1 Microsoft .Net architecture . 192

9.1.1 Microsoft .Net Web service application architecture 194
9.1.2 Developing software using Microsoft Visual Studio .Net 2003 196
9.1.3 Microsoft secure Web services implementation 200

9.2 WebSphere Java 2 Enterprise Edition architecture. 201
9.2.1 Java 2 Enterprise Edition Web service architecture 204
9.2.2 Developing J2EE applications using WebSphere Studio Application

Developer . 206
9.2.3 IBM secure Web services implementation 208
9.2.4 Summary. 212

Chapter 10. Deploying Web services. 215
10.1 Overview . 216

10.1.1 Web services publishing . 216
10.2 WebSphere Web services deployment model 217

10.2.1 Web Services Gateway. 217
10.2.2 IBM UDDI registry . 220
10.2.3 Deployment architecture . 220

10.3 Microsoft .Net Web service deployment model 222
10.3.1 Microsoft UDDI registry . 222
10.3.2 Deployment architecture . 223

10.4 Summary . 226

Part 3. Claims scenario . 227

Chapter 11. Designing the scenarios . 229

vi WebSphere and .Net Interoperability Using Web Services

11.1 Mergers and Acquisitions scenario . 230
11.1.1 Use cases overview . 230
11.1.2 Actors . 231
11.1.3 Use case 001: Register claim . 232
11.1.4 Realizing the use case . 234

11.2 External Claims Assessors scenario . 240
11.2.1 Use cases overview . 240
11.2.2 Actors . 240
11.2.3 Use case 002: Manage external claim assessors. 241
11.2.4 Realizing the use case . 244

11.3 Claim applications: table schema . 245
11.4 XML schema data types as common denominator 246

11.4.1 Data type mapping . 246
11.4.2 SOAP message for registerClaim() . 247
11.4.3 SOAP message for findCustomer(). 248
11.4.4 SOAP exception for findCustomer() . 249

11.5 Summary . 250

Chapter 12. Building the claims scenario . 251
12.1 Building the scenario for WebSphere . 252

12.1.1 Problem definition . 252
12.1.2 Solution . 252
12.1.3 Import Enterprise JavaBeans . 252
12.1.4 Test imported Enterprise JavaBeans . 256
12.1.5 Create a Web service from Enterprise JavaBeans 262
12.1.6 Test the created Web service . 269
12.1.7 Deploy the created Web service . 271

12.2 Building the scenario for Windows Server 2003 276
12.2.1 Prerequisites to run the Web service application 276
12.2.2 Create the Web Service . 276
12.2.3 Import the existing classes . 279
12.2.4 Build the Web service . 282
12.2.5 Microsoft Internet Information Services (IIS) 283
12.2.6 Create Microsoft .Net Test Client . 285
12.2.7 Summary. 292

12.3 Building the Web services clients . 293
12.3.1 Web service client for the WebSphere Web service 294
12.3.2 Web service client for the Microsoft .Net Web service 300
12.3.3 Microsoft .Net . 303
12.3.4 Differences between the two Web services and conclusions 303

Chapter 13. Web service interoperability implementation guidance . . . 311
13.1 Web service interoperability guidance. 312

 Contents vii

13.2 WebSphere client . 312
13.3 WebSphere Web service. 314
13.4 Microsoft .Net client. 315
13.5 Summary . 315

Part 4. Appendixes . 317

Appendix A. Installation and setup . 319
Installation planning for the WebSphere environment 320

WebSphere Application Server V5.1.1.1 requirements. 320
Installing WebSphere Application Server 5.1.1.1 321
Installation of Application Developer 5.1.2 . 323

Installation planning for the Microsoft .Net environment 325

Appendix B. Additional material . 327
Locating the Web material . 327
Using the Web material . 328

System requirements for downloading and running the Web material . . . 328
How to use the Web material . 328

Related publications . 329
IBM Redbooks . 329
Online resources . 329
How to get IBM Redbooks . 333
Help from IBM . 333

Abbreviations and acronyms . 335

Index . 339

viii WebSphere and .Net Interoperability Using Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
alphaWorks®
developerWorks®
ibm.com®
ClearCase®
Cloudscape™
CICS®

DB2®
IBM®
IMS™
Lotus®
MQSeries®
Notes®
PAL®
Rational Unified Process®
Rational®

Redbooks™
Redbooks (logo)™
RUP®
S/390®
Tivoli®
WebSphere®
XDE™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Screen shot(s) reprinted by permission from Microsoft Corporation.

Permission to copy and display the "Business Process Execution Language for Web Services Specification,
version 1.1 dated May 5, 2003" (hereafter "the BPEL4WS Specification"), in any medium without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the BPEL4WS
Specification, or portions thereof, that you make a link to the BPEL4WS Specification at these locations:

http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-1.asp

http://ifr.sap.com/bpel4ws/

http://www.siebel.com/bpel

x WebSphere and .Net Interoperability Using Web Services

http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-1.asp
http://ifr.sap.com/bpel4ws/
http://www.siebel.com/bpel

Preface

In this IBM Redbook, we use Web services to integrate the insurance processes
of two merged companies. One insurance company is using WebSphere
Application Server to host its applications, the other is using Microsoft .Net.

In this typical scenario, the IT director has decided to realize the increased
revenue opportunity brought about by the merger of the two companies by
presenting its customers and agents with a single customer view. The plan is to
reuse both companies’ existing insurance applications by converting them to
Web services and integrating them with common business processes.

Our goal is to explore the following question:

How do we use the Web service capabilities in IBM and Microsoft®’s flagship
WebSphere and Microsoft .Net products to integrate applications running in the
two environments?

To give you a broad understanding of the capabilities and direction of Web
services, we survey the specifications that have been published and the
progress that is being made to ensure that implementations of the specifications
work together. We also include a practical guide to using the Web services
capabilities of WebSphere Studio Application Developer and Microsoft Visual
Studio .Net 2003 by building the scenario.

The contents of the book are as follows.

� Part 1, “Introduction to Web services” on page 9 is an introduction to Web
services.

– Chapter 2, “SOAP primer” on page 11 describes what is inside a SOAP
message.

– Chapter 3, “WSDL primer” on page 27 describes how WSDL definitions
are structured, and how they are used to generate SOAP messages.

– Chapter 4, “Web services primer” on page 39 introduces the concepts of
Web services and the relationship of Web services to Service-Oriented
Architecture (SOA) and the Enterprise Service Bus (ESB).

� Part 2, “Web services interoperability” on page 67 covers the scenario
requirements, solution architecture and surveys current and future Web
services technology.

– Chapter 5, “Business scenarios” on page 69 describes the business
scenario what will be used throughout the book to define requirements,

© Copyright IBM Corp. 2005. All rights reserved. xi

and to provide the context for the examples of using Web services to build
a solution using services hosted on WebSphere Application Server and
Microsoft .Net.

– Chapter 6, “Interoperability patterns” on page 93 discusses mapping
Patterns for e-business to a Service-Oriented Architecture implemented
using Web services and identifies the patterns that are used to implement
the business scenario.

– Chapter 7, “Web services roadmap” on page 113 summarizes most of the
Web service specifications that have been published.

– Chapter 8, “Web service specifications” on page 145 looks at the work of
the WS-I organization, explains the published WS-I profiles and looks in
more detail at the security, transaction and reliable messaging
specifications which are among the more important Web service
specifications to build a robust Web services based infrastructure.

– Chapter 9, “Web services in Microsoft .Net and WebSphere” on page 191
describes how Web services are implemented in the Java 2 Enterprise
Edition architecture of WebSphere Application Server 5.1 and Microsoft
.Net architecture in Microsoft Server 2003.

– Chapter 10, “Deploying Web services” on page 215 discusses Web
service deployment using UDDI in WebSphere Application Server and
Microsoft Server 2003.

� Part 3, “Claims scenario” on page 227 continues the scenario development
by taking the Runtime pattern from Chapter 6, “Interoperability patterns” on
page 93 and mapping it to WebSphere and Microsoft .Net and then describes
how to build the solution and some of the lessons we learned.

– Chapter 11, “Designing the scenarios” on page 229 returns to the
business scenario and describes the use cases that are implemented in
the examples.

– Chapter 12, “Building the claims scenario” on page 251 implements the
first “Register Claim” scenario, showing a simple solution composed of
services provided in both a Microsoft .Net and a Java 2 Enterprise Edition
environment.

– Chapter 13, “Web service interoperability implementation guidance” on
page 311 looks at some differences we found when building Web services
with WebSphere Studio Application Developer and Microsoft .Net Studio
2003, and what to do about them.

� Appendix A, “Installation and setup” on page 319 provides some hints and
tips and instructions for building the scenario for yourself from the materials
that are provided with the redbook.

xii WebSphere and .Net Interoperability Using Web Services

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Mahendra, Peter, Francesca, William and Hedley

Peter Swithinbank is a new project leader at the International Technical Support
Organization, Raleigh Center. Before joining the ITSO, he worked in IBM System
House developing Business Scenarios for IBM Software Group. He has 26 years
of experience in IBM. He holds a degree in Geography from Cambridge and a
Diploma in Software Engineering from Oxford University. His areas of expertise
include scenario driven development, Web services, messaging and adapters.

Francesca Gigante is an IT Architect working for IBM Global Services in Rome,
Italy. She has eight years of experience in IBM, starting early with Java™
technology and moving later to J2EE and WebSphere® technology. She has a
wide experience in building EAI architectures and delivering e-business
customer projects. She also worked for Nokia as a technical architect in the
mobile services area. She holds a degree in Electronic and TLC Engineering
from Bari Polytechnic University, Italy.

Hedley Proctor is a software engineer at IBM Hursley, England. He studied
physics at Oxford University and philosophy at Durham University before joining
IBM in September 2002. He worked on versions 5 and 5.1 of the WebSphere

 Preface xiii

SDK for Web Services, specializing in the Eclipse plug-ins, samples and
interoperability. Two of his tutorials on secure Web services interoperability are
available on developerWorks®.

Mahendra Rathore is a Senior Project Manager and manages an e-marketplace
development project at the Oilpalmworld Sendirian Berhad in Kuala Lumpur,
Malaysia. His experience includes over six years of managing IT projects
involving e-business and J2EE solutions and over eleven years of consulting in
the IT industry. He has been serving as a Board Member at the Project
Management Institute (PMI) Singapore Chapter since 2003. He is a Certified
Information System Auditor (CISA). Mahendra holds a Master’s degree in
Computer Applications and Bachelor Degree in Electronics from the University of
Jodhpur, India and currently lives in Singapore.

William Widjaja graduated from Florida Institute of Technology, Melbourne,
Florida with a BS and MS in Computer Science and an MBA. He has worked as
a consultant for over 20 years in financial companies such as JP Morgan, CS
First Boston, American Express Bank and the insurance company Guardian Life
Insurance of America. He is a Sun Certified Java Programmer, Solaris 8 System
and Network Administrator, Certified Oracle 8 DBA and Microsoft Certified
Professional.

Thanks to the following people and organizations for their contributions to this
project:

Alan Hui of IBM System House for advocating a redbook on Web services
standards and interoperability.

IBM System House for funding a number of projects in IBM, including this
redbook, to improve the integration of software products and help to realize on
demand computing.

Bill Moore and Martin Keen at the International Technical Support Organization,
Raleigh Center for organizing the project and helping with the process of
producing Redbooks™.

Chris Ferris, an IBM Senior Technical Staff Member and IBM representative to
the WS-I organization.

Hyen-Vui Chung, IBM WebSphere Application Server development leader for
Security.

xiv WebSphere and .Net Interoperability Using Web Services

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi WebSphere and .Net Interoperability Using Web Services

Chapter 1. Introduction

In this introduction, we discuss the general background for this redbook and the
details thereof.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Background of this book
This book builds on work done by the IBM System House Business Scenarios
team based in IBM’s development laboratories in Hursley, England. Using typical
business scenarios validated by IBM’s customers, the System House scenario
teams design and build solutions with the help of IBM’s product development
teams. The experience that is gained using this “outside in” design process is
used to improve the integration of IBM’s products. The experience is also used to
publish Redbooks and developerWorks articles about how to build solutions.
See:

http://www-136.ibm.com/developerworks/scenarios/

for more details.

1.1.1 The scenario
One of the companies is using WebSphere, CICS and WebSphere MQSeries to
deliver insurance products through insurance agents and a call center. The other
has developed a Microsoft .Net solution to provide a Web-only channel to sell car
insurance directly to its customers. The merger of the two companies will
increase revenues by providing multiple channels to its combined customer base
over which it can sell its both sets of insurance products. The insurance company
is also outsourcing its auto claims assessment process (loss adjustment) and
using Web services to automate business processes shared with its business
partners.

Merger of two insurance companies

2 WebSphere and .Net Interoperability Using Web Services

http://www-136.ibm.com/developerworks/scenarios/

The original scenario was published on developerWorks as “Merging disparate
IT systems: Build a single integrated view for users quickly and with minimal
disruption” and is available at:

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html

The version of the scenario we use is described in Chapter 5, “Business
scenarios” on page 69.

A major consideration in architecting the solution has been to realize the benefits
of the merger quickly by keeping changes to existing systems and development
environments as few as possible. The insurance applications developed and
hosted in each insurance company need to be integrated into the Web,
insurance agent and call center channels using a common service bus. Also, to
keep the entry costs for claims assessors doing business with the insurance
company as low as possible, the claims assessors are not tied to using a
particular software platform by the insurance company.

1.1.2 Use of Web services
The company requires stable standards for interoperation of its development and
runtime environments. It is running WebSphere Application Server and Microsoft
Server 2003. It also needs to offer its business partners stable development and
runtime interfaces to integrate their business processes with the insurance
company’s automated claims assessor process, using whatever development
and runtime environment suits each partner best.

In this redbook, we investigate how well Web services meet these interoperability
requirements by building Web service interfaces to the insurance applications
using WebSphere Studio Application Developer and Microsoft .Net Studio and
providing standard Web service interfaces for business partners.

1.1.3 Other approaches to interoperability
Our approach to using Web services is only one of a number of ways to achieve
interoperability between Microsoft .Net and Java 2 Enterprise Edition software
systems. Microsoft and IBM have both published books on the Web that explore
interoperability between Microsoft .Net and Java 2 Enterprise Edition, from a
wider perspective than Web services.

The redbook WebSphere and Microsoft .Net Coexistence, SG24-7027 at
http://www.redbooks.ibm.com/abstracts/sg247027.html?Open analyzes
different coexistence scenarios, proposes various solution architectures and
provides practical examples. Microsoft’s Patterns and Practices series includes
Application Interoperability: Microsoft .Net and J2EE (found at
http://download.microsoft.com/download/7/2/6/7269f183-639a-4e99-bd84-cc

 Chapter 1. Introduction 3

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html
http://www.redbooks.ibm.com/abstracts/sg247027.html?Open
http://download.microsoft.com/download/7/2/6/7269f183-639a-4e99-bd84-cc3e6515af86/PnP_J2EE_Interop_V1.pdf

3e6515af86/PnP_J2EE_Interop_V1.pdf). In the book, the authors compare
Microsoft .Net and J2EE architectures, analyze interoperability between different
layers of the two architectures and provide examples of making the layers
interoperate. It is interesting to read the two accounts of Microsoft .Net and Java
2 Enterprise Edition side by side, and to contrast the solutions offered in the two
books.

The method followed by the authors of the IBM and Microsoft books on Java and
Microsoft .Net is to look at interoperability from a number of different technical
and architectural perspectives. These books are essential reading to gain a good
understanding of different ways to make Java 2 Enterprise Edition and Microsoft
.Net work together.

Our objective is different. It is to look in detail at how to use Web services to
implement the integration in a particular scenario. Where Web service
capabilities are missing, we have not tried to implement an alternative solution
that does not use Web services.

Limitations
Perhaps the most important missing capability is Web services security. We
intend to demonstrate connecting the merged insurance company securely
across the Internet with its external claims assessors using Web services. The
solution depends upon WebSphere and Microsoft .Net implementing
WS-Security 2004, and the WS-I organization approving the Basic Security
Profile 1.0. Our expectation is that this will all happen in 2005 and we hope to
return to this redbook then and build the external claims assessor part of the
scenario which links the insurance company to its outsourced claims assessor.

1.1.4 WS-I
We have based our choice of Web service standards on the work of the WS-I
organization. Part of this redbook is an account of WS-I and addresses why we
think WS-I is so important to get Microsoft .Net and WebSphere (and other Web
service vendors) to interoperate in a stable and economic fashion.

The standards profiles of the WS-I organization have only just started to appear
in the last year. The practical scope of this redbook is limited to examining the
interoperability of Web services software components defined by the WS-I using
version 5.1 of the WebSphere platform software and the Windows® Server 2003
version of the Microsoft .Net platform.

4 WebSphere and .Net Interoperability Using Web Services

http://download.microsoft.com/download/7/2/6/7269f183-639a-4e99-bd84-cc3e6515af86/PnP_J2EE_Interop_V1.pdf

1.1.5 Audience
There are many papers and books written about Web services for the IT
professional who is principally concerned with creating a Web services
infrastructure or building new Web service tools or runtimes. We wanted to write
a book for IT consultants, architects, programmers and administrators who
expect to build solutions using “out of the box” products from software vendors
without having to employ specialists to build their own Web service
infrastructures.

We wanted to re-use existing software components hosted on WebSphere
Application Server and Microsoft .Net and integrate them into new solutions
using a Service-Oriented Architecture. Our expectation is that Web services are
reaching a level of maturity that will enable us to integrate existing software
components into solutions using the tools that are provided by IBM and
Microsoft. We want to know to what extent this is possible today without having
to work around interoperability problems. We want to know what missing
capabilities are being standardized and when the capabilities will be
implemented and interoperable between Microsoft .Net and WebSphere
Application Server.

Consultants, architects, programmers and administrators will find some chapters
of this book of greater relevance.

� Consultants

Consultants need to advise their clients about interoperability in a
Service-Oriented Architecture. They need to be able to separate fact from
fiction: what can and cannot be done today in a heterogeneous environment,
and what it is reasonable to expect from the next releases of WebSphere
Application Server and Microsoft .Net.

Consultants will be interested in Chapter 5, “Business scenarios” on page 69,
dealing with how the scenario is mapped to a Web services based solution.
They will be interested in Chapter 6, “Interoperability patterns” on page 93,
and in the roadmap for Web service standards in Chapter 7, “Web services
roadmap” on page 113.

� Solution Architect1

A Solution Architect plays the pivotal role in translating business requirements
into the definition and scope of an IT project and is responsible for delivering
value back to the business from its investment in IT.

The Solution Architect, in conjunction with the Application Architect, is
responsible for making a decision about adopting a Web services based

1 Also called the Systems Analyst in the Rational® Unified Process® (RUP®)

 Chapter 1. Introduction 5

strategy for integrating the two insurance companies and automating the
claims process with business partners.

The Solution Architect will be interested in the same chapters as the
consultants and also in Chapter 8, “Web service specifications” on page 145.

� Application Architects2

An Application Architect is responsible for the major technical decisions that
drive and constrain the development of the software system.

In addition to the chapters previously mentioned, the Application Architect will
be interested in how Web services are implemented by IBM and Microsoft;
this is detailed in Chapter 9, “Web services in Microsoft .Net and WebSphere”
on page 191. Deployment of the solution is discussed in Chapter 10,
“Deploying Web services” on page 215.

� Application Programmers

The Application Programmer will be interested in building and deploying the
solution as detailed in Chapter 11, “Designing the scenarios” on page 229
and Chapter 12, “Building the claims scenario” on page 251. They should
also look at 8.2, “WS-I Basic Profile 1.0” on page 146 to understand potential
interoperability problems when developing Web services.

� System Administrators deploying a solution

The Systems Administrator will be interested in the pattern used to implement
the scenario and UDDI and deployment, concepts behind Web services and
the key standards WS-I references.

1.1.6 Terminology
We should clarify the use of the phrases “Web services standard” and “Web
services specification” in this book. Web services are evolving rapidly and there
are many Web service specifications and standards. It is confusing that the two
terms are often used interchangeably. Unfortunately, the unqualified term
“standard” is used rather loosely to refer to specifications in various states of
standardization and can give the reader a spurious sense that the specification
has been finally approved.

2 Also known as the Software Architect in RUP

6 WebSphere and .Net Interoperability Using Web Services

Web service specifications and standards Venn diagram

In this redbook, we will try to maintain the use of “Web services specification”
when referring to any WS-* (pronounced WS splat) specification, and other
specifications that are specifically about Web services, such as WSDL, SOAP
and UDDI.

We will try to only use the term Web service standard when we are talking
specifically in the context of standards-related activities, such as when using the
expression “a proposed W3C Web service standard.” We hope this will avoid a
misleading impression that all Web service specifications are finalized and ready
to be used in solutions.

 Chapter 1. Introduction 7

8 WebSphere and .Net Interoperability Using Web Services

Part 1 Introduction to
Web services

In this part, we sketch out the concepts of Web services, WSDL and SOAP. If
you want to review more details, there are readily accessible online texts which
will prove useful:

1. The IBM Redbook WebSphere Version 5.1 Application Developer 5.1.1 Web
Services Handbook, SG24-6891, available at:

http://www.redbooks.ibm.com/abstracts/sg246891.html?Open

This redbook provides a thorough description of Web services and discusses
the WebSphere Application Server 5.1 implementation.

2. For a Microsoft perspective, visit their Web services Web page at:

http://msdn.microsoft.com/webservices/understanding/default.aspx

.

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 9

http://msdn.microsoft.com/webservices/understanding/default.aspx
http://www.redbooks.ibm.com/abstracts/sg246891.html?Open

10 WebSphere and .Net Interoperability Using Web Services

Chapter 2. SOAP primer

SOAP is defined in Simple Object Access Protocol (SOAP) 1.1, W3C note 8,
May 2000 (found at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/) as
follows:

“SOAP provides a simple and lightweight mechanism for exchanging structured
and typed information between peers in a decentralized, distributed environment
using XML. SOAP does not itself define any application semantics such as a
programming model or implementation specific semantics; rather it defines a
simple mechanism for expressing application semantics by providing a modular
packaging model and encoding mechanisms for encoding data within modules.
This allows SOAP to be used in a large variety of systems ranging from
messaging systems to RPC.”

This is the version of SOAP referred to in WS-I basic Profile 1.1.

SOAP V1.2 (currently a recommendation of the W3C) shortens the definition to:

“SOAP Version 1.2 provides the definition of the XML-based information which
can be used for exchanging structured and typed information between peers in a
decentralized, distributed environment.”

This is found at http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

As witticists have it, SOAP is no longer simple, and it is not about objects! So
what is SOAP?

2

© Copyright IBM Corp. 2005. All rights reserved. 11

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

2.1 What is SOAP?
SOAP was first created by Microsoft, UserLand, and DevelopMentor in 1998.
The rule was: no new network technologies; use what is there and keep it simple
so that it works. SOAP is seen as a way of overcoming the obstacles in making
objects work together, though they may be written in different languages, running
on different platforms, and communicating with different protocols over the
Internet. It also enables programs to communicate through firewalls that are
being administered to permit browser traffic.

SOAP rides on the wave of success of XML and the Internet. XML is the lingua
franca for programs to exchange typed and structured information. Http: is the
connectionless protocol to exchange information simply over the Internet. SOAP
helps to clean up distributed application architecture by defining remote
application access in terms of technology-neutral interfaces expressed in XML.
SOAP is not yet another distributed component technology such as Java-RMI,
DCOM or IIOP.

In summary, there are four factors that explain the popularity of SOAP:

� Technology-neutral
� Internet-friendly
� Simple to use to create compatible implementations on different platforms
� SOAP solutions are built on top of existing IT infrastructures

2.2 SOAP components
To enable an existing Internet-enabled infrastructure to communicate using
SOAP, every node that sends or receives SOAP messages needs to have a
SOAP component. These SOAP components put SOAP messages onto the
Internet and take them off using the ubiquitous http protocol.

12 WebSphere and .Net Interoperability Using Web Services

Figure 2-1 One SOAP processor per environment

The messages contain the type information necessary for the SOAP component
to code and decode requests for any host software environment. With the type
necessary to interface with host environments captured in the SOAP message in
a technology-independent format, it is only necessary to write one SOAP
processor for each software environment on the server (a very practical
proposition) and not to write adapters for every combination of software
environment in both the client and server.

In computer science jargon, it roughly reduces the n-squared size of a problem to
n. What does this mean? As shown in Figure 2-1, each of the five types of nodes
(say different operating systems or languages) has only one SOAP processor. If
each node communicated in its native data types, then each partner would have
to have a special partner SOAP processor to understand SOAP messages from
each of its partners (four each, plus one to handle SOAP messages to itself).
Each of the five SOAP processors would need to be written differently for the five
nodes, so one would end up with 25 (n-squared) SOAP processors rather than
just 5 (n).

The three most important innovations in SOAP have proven to be:

1. Using XML to type information being sent from one program to another; this
enables programming language interoperability and is the natural transport
for XML documents.

 Chapter 2. SOAP primer 13

2. Isolating a separate application access layer (the SOAP component) to
manage application routing.

3. Defining an extensible architecture to build application access and routing
mechanisms. The architecture is implemented by the SOAP component
which is independent of the network protocol and the software environment.

This SOAP component encapsulates application interoperability issues and is
not concerned with the complications of different network transports and
different software environments.

SOAP is complemented by two other technologies which we will look at in later
chapters:

� WSDL is the second element of Web services and has proven to be just as
important as SOAP. We will look at WSDL in the next chapter.

� The third element, UDDI, has not yet had such a large influence on software
architecture; this reflects that we are only now moving on from the early
adoption of Web services to their use in production applications. We will look
at UDDI in Chapter 10, “Deploying Web services” on page 215.

2.3 What is in a SOAP message?
A SOAP message is an XML document. The outermost root element is the
SOAP Envelope. These examples use the SOAP 1.1 specification to comply with
WS-I basic profile 1.1

Figure 2-2 SOAP envelope

2.3.1 Headers
A SOAP Header is optional. It is an extension mechanism to pass information in
the SOAP message that is not part of the application payload. Inside a SOAP
Header are header entries. Each header entry is an child of the SOAP Header.

<?xml version='1.0'?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header> <!-- optional -->
 <!-- headers... -->
 </soap:Header>
 <soap:Body>
 <!-- payload or fault message -->
 </soap:Body>
</soap:Envelope>

Namespace defines SOAP version

14 WebSphere and .Net Interoperability Using Web Services

Figure 2-3 SOAP Header

Header entries:

� Must be qualified by a namespace and a local name to uniquely identify the
header.

� May include a SOAP encodingStyle attribute, although use of XML schemas
to type data is now preferred. This is not allowed in SOAP 1.2 except where
indicated in the specification.

� May include the attribute mustUnderstand=“1” or “0” (SOAP 1.1) or the
logical values true or false (SOAP 1.2) to indicate if the recipient must
interpret the header or not. The default is “0”.

� May include the attribute actor, termed role in SOAP 1.2. role=URI. The
role indicates which SOAP node should process the header.

Figure 2-4 SOAP intermediaries

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://schemas.xmlsoap.org/soap/envelope/actor/next"
 env:mustUnderstand="1">
 <m:dateAndTime>2001-11-29T13:35:00.000-05:00</m:dateAndTime>
 </m:reservation>
</env:Header>
 <env:Body>
<!-- payload or fault message -->
</env:Body>
</env:Envelope>

Header entry Mandatory namespace

default roleMust be processed

local names are arbitrary

 Chapter 2. SOAP primer 15

In SOAP 1.2, there are three standardized URIs defined for the role: none,
next and ultimateReceiver. Alternatively, a specific URI may be specified.
The default role is next. SOAP 1.2 introduced none and ultimateReceiver.

SOAP 1.2 adds an additional header entry attribute: relay. The default
behavior is to remove header entries, unless the processing requires it to be
reinserted. The relay attribute is used to specify that unprocessed headers
are relayed rather than removed.

2.3.2 Body
The SOAP Body carries the application “payload” or fault messages. Typical
uses of the Body are to provide parameters for RPC calls, exchange XML
documents and report fault messages.

The Body is semantically equivalent to the Header. The only difference is that the
Body is targeted at the final recipient, whereas the header is also processed by
intermediates. From the final recipient’s perspective, the Header and Body are
equivalent. It is up to the application designer how to use them.

The rules for the Body are:

1. A Body entry is an immediate child of the Body
2. A Body entry is identified by a its a fully qualified name: that is, a namespace

and a local identifier. However, immediate children of the SOAP Body
element are optionally namespace qualified.

Figure 2-5 SOAP Body

2.3.3 Fault
The SOAP Fault is a Body entry with the local Id of Fault that can only appear
once. In SOAP 1.2, it must be the only element of the SOAP Body. It has the
following sub-elements:

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope">
<!-- Header -->
<env:Body>
<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">
<p:departure>
 <p:departing>New York</p:departing>
</p:departure>
</env:Body>
</env:Envelope>

Body entry local id and namespace

using local id, not explicitly providing namespace

16 WebSphere and .Net Interoperability Using Web Services

� Faultcode, called Code in SOAP 1.2

The Faultcode must be present, and must be a fully qualified name. In
practice, one of the predefined SOAP faultcodes from the Envelope
namespace is normally used:

– VersionMismatch
– MustUnderstand
– Client
– Server

� Faultstring, called Reason in SOAP 1.2

The Faultstring must be present, and provides a textual reason for the Fault.
In SOAP 1.2, provision is made for multiple language versions of the Reason.

� Faultactor

Principally used by nodes other than the ultimate receiver to provide
information (in the form of a URI) about where a Fault occurred.

� Detail

Provides application specific details about a fault incurred when processing
the Body of a SOAP message. Errors in processing the Header must be
reported in the Header entries. Absence of the detail element in a Fault
message absolutely distinguishes errors caused by processing the Header or
the Body.

Figure 2-6 SOAP fault due to error in Body

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope">
<!-- Header -->
 <env:Body>
 <env:Fault>
 <env:Faultcode>Server</env:Faultcode>
 <env:Faultstring>Processing error</env:Faultstring>
 <env:Detail>
 <e:myFaultDetails xmlns:e="http://travelcompany.example.org/faults">
 <e:message>Name does not match card number</e:message>
 <e:errorcode>999</e:errorcode>
 </e:myFaultDetails>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

 Chapter 2. SOAP primer 17

2.4 Message styles
There are two main SOAP message styles, RPC and Document. The intent of
RPC-Style is to model a remote procedure call as an XML document, whereas
Document-Style is intended for the transmission of XML documents. RPC comes
in two flavors, RPC/Encoded and RPC/Literal. With RPC/Encoded the RPC
request is encoded using special SOAP-encoded XML tags. The usual
Document-Style is Document/Literal, and like RPC/Literal leaves the
interpretation of the XML tags to the use of standard XML mechanisms, such as
XML schemas. There is a difference between the RPC/Literal and
Document/Literal style that is explained below.

2.4.1 RPC-Style
Back in 1998 SOAP was mainly seen as an RPC mechanism over http:. It had its
own typing mechanism (SOAP-encoding) because XML schema hadn’t been
agreed. This style of using SOAP is called RPC/Encoded.

There is also a RPC/Literal style that doesn’t use an encoding scheme to
indicate the type of XML elements in the SOAP message. The client and server
must agree on types “out of band.”

Figure 2-7 RPC/Encoded Style - SOAP 1.1

RPC/Encoded SOAP has given rise to a number of interoperability problems, and
WS-I prefer the use XML schemas to provide type information. In fact Figure 2-7
is not a valid WS-I basic profile 1.1 SOAP message because it breaks rule 1006:

R1006 An ENVELOPE MUST NOT contain soap:encodingStyle attributes on any
element that is a child of soap:Body.

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<soap:Body>
 <m:GetLastTradePrice xmlns:m="http://itso.ral.ibm.com/SG24-6395/">
 <symbol type=”string”>IBM</symbol>
 </m:GetLastTradePrice>
 </soap:Body>
</soap:Envelope>

SOAP encoding

18 WebSphere and .Net Interoperability Using Web Services

Figure 2-8 is a valid RPC/Literal SOAP message.

Figure 2-8 RPC/Literal Style - SOAP 1.1

2.4.2 Document-Style
The attraction of the RPC-Style was that it:

� Provided a ready-made type system, something that was hard to do before
XML schemas were standardized and before the adoption of WSDL and
UDDI provided a means to exchange type information about SOAP
messages.

� Was easy for application programmers to use before more sophisticated
development tools were developed.

� Was necessary to have an RPC object access protocol to be considered as
an serious alternative to DCOM and CORBA.

� RPC-encoded messages are self-describing. This was important before
WSDL was invented.

The Document-style of SOAP was there from the beginning - in order to
exchange more complex XML documents. Unlike RPC, the Document-style
makes no assumptions about the interaction style and is the format to use for
EDI type exchanges using loosely coupled transports such as messaging or
Email. Unlike RPC/encoded messages, Document-style messages are not self
describing. The sender and receiver need to share the WSDL definition.
Document-Style has grown to be the preferred way to use SOAP for a number of
reasons:

� Typing is possible using XML namespaces; why have two ways of encoding
data?

� RPC using Document-Style is now straightforward, using tools to generate
the client and server stubs from the WSDL file.

� De-coupling the message from the means of interaction: Document-Style
makes no presumptions about how the message is to be delivered

� When using SOAP to implement Web services, the sweet spot is the coarse
grained business service, which in all likelihood could have of the order of

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
<soap:Body>
 <m:GetLastTradePrice xmlns:m="http://itso.ral.ibm.com/SG24-6395">
 <symbol>IBM</symbol>
 </m:GetLastTradePrice>
 </soap:Body>

</soap:Envelope>

 Chapter 2. SOAP primer 19

hundreds or thousands of attributes, and the interface will be changing
regularly.

RPC-Style is suitable for interactions between low-level objects with small
and stable method signatures.

� Document-Style is more appropriate than RPC-Style for asynchronous
messaging.

Interactions between coarse grained services, frequently deployed over
different networks, can only achieve high availability by being designed for
loosely coupled asynchronous behavior.

� Document-Style processing is also significantly more efficient than RPC-Style
as payload increases.

See Frank Cohen, Discover SOAP encoding's impact on Web service
performance, found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc

On the wire, Document/Literal style SOAP need look no different to
RPC/Literal. Example 11-1 on page 247 shows a Document/Literal SOAP
message generated by WebSphere Studio Application Developer.

Document/Literal style is generally preferred over RPC/Literal because all the
type information to interpret the SOAP message is defined in the WSDL for a
Document literal message. In the case of RPC/Literal one needs to know the
rules for constructing the RPC message as well as the WSDL to fully understand
the SOAP message

2.4.3 Document/Wrapped
There is one other variety of SOAP message style, called Document/Wrapped
that is effectively a Document/Literal with a single outmost complex type
containing the rest of the XML document. It has its advocates, as it combines
RPC-style in carrying the RPC operation name unambiguously in the outermost
XML element, and Document-style in being a fully typed XML document.
However, you will only infrequently see Document/Wrapped style as an option in
tooling. WS-I refer to Document/Literal as the preferred style for interoperability.

The WS-I committee preferred to leave the mapping of the operation name open
in the case of Document/Literal rather than specify a syntax convention, such as
that of Document/Wrapped,

“In the document-literal case, since a wrapper with the operation name is not
present, the message signatures must be correctly designed so that they
meet this [operation name is used as a wrapper for the part accessors]
requirement”1

20 WebSphere and .Net Interoperability Using Web Services

http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc

2.5 SOAP interaction styles
SOAP messages are fundamentally one-way transmissions. They are combined
to form interaction patterns such as request-response. The modeling of
interaction patterns is only evident in WSDL and in mapping to a SOAP
transport. There is nothing in the SOAP message, such as a means of
correlating replies with requests, that indicates the interaction style. A new
specification, WS-Addressing, introduces headers to assist managing more
sophisticated interaction styles.

WS-I limits its attention to only one-way and request-response interaction styles
because of ambiguities in the WSDL for other interaction style:

R2303 A DESCRIPTION MUST NOT use Solicit-Response and Notification type
operations in a wsdl:portType definition.

2.5.1 Request-response
Perhaps because SOAP is most frequently married to the Http: request-response
model as its transport, and because of SOAPs origins in RPC-Style distributed
computing, SOAP is most often associated with request-response interactions.

When using Http: as a transport SOAP request-response must be implemented
by using an Http: Post.

Figure 2-9 SOAP Request implemented as and Http: POST

and its corresponding response message:

1 R2710, WS-I Basic Profile Version 1.0, found at,
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

POST /Reservations HTTP/1.1
Host: travelcompany.example.org
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" >
<env:Header>... </env:Header>
<env:Body>
 <m:chargeReservation xmlns:m="http://travelcompany.example.org/">
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation">
 <m:code>FT35ZBQ</m:code>
 </m:reservation>
</env:Body>
</env:Envelope>

 Chapter 2. SOAP primer 21

Figure 2-10 Http: SOAP response message

2.5.2 One-way
With the one-way interaction model, WS-I stipulates that there must be no SOAP
reply. When using a request-response protocol, such Http:, then no SOAP
message must be flowed back by in the response. The Http: protocol should still
be observed, flowing an Http: response code back in the reply.

2.6 SOAP implementations over Http:
Implementations of SOAP request-response over Http: should conform to Http:
as well as SOAP specifications. For example, Http: response codes must be
returned from SOAP operations. More controversial is the question of how to
identify the service to be invoked. Good Http: practice is for application writers to
uniquely identify the Web service in the URI supplied to POST. Considerations of
discovery, packaging and performance have led to using the URI as a starting
point from which to identify the Web service method to invoke, rather than fully
specifying it.

2.6.1 Microsoft .Net SOAP request over Http
Microsoft uses an additional SOAP header, SOAPACTION to express “the intent of
the message”. In this example, taken from Aaron Skinnard, “How ASP.NET Web
Services Work”, found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/
howwebmeth.asp

The dispatching of the correct method is as follows. The.asmx handler
introspects the math class for a Web-method with a SOAPACTION value of Add.
If there is no SOAPACTION attribute defined for the method it uses the
namespace of the class. With no namespace specified for the class either, it

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version='1.0'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" >
 <env:Header>... </env:Header>
 <env:Body>... </env:Body>
</env:Envelope>

22 WebSphere and .Net Interoperability Using Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/howwebmeth.asp

assumes http://tempuri.org which matches the SOAPACTION header in the
SOAP message

Figure 2-11 Dispatching the Web service method “Add” in Microsoft .Net

2.6.2 IBM WebSphere Application Server SOAP request over Http:
For WebSphere Application Server (see Figure 2-12), the Http: POST URI points
at the servlet in the Web project that has been deployed to handle this Web
service request.

Figure 2-12 Dispatching the Web service method “findCustomer”

POST /math/math.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPACTION: "http://tempuri.org/Add"

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Add xmlns="http://tempuri.org/">
 <x>33</x>
 <y>66</y>
 </Add>
 </soap:Body>
</soap:Envelope>

POST /ItsoClaimRouterWeb/services/LGIClaimRegistration HTTP/1.0
Host: localhost:9081
Content-Type: text/xml; charset=utf-8
Content-Length: 419
SOAPACTION: ""

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:q0="http://ejb.claim.examples.itso"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<q0:findCustomer>
<q0:customerID>abc</q0:customerID>
<q0:policyID>123</q0:policyID>
</q0:findCustomer>
</SOAP-ENV:Body>

 Chapter 2. SOAP primer 23

The deployment descriptors (web.xml and webservices.xml) point the request to
the service endpoint - in this example the LGIClaimRegistration EJB. The SOAP
Body outermost entry name is mapped to the corresponding method in the EJB.

2.7 Summary: Salient interoperability features of SOAP
In summary, what are the features of the SOAP specification that have made it a
good protocol for application interoperability?

� It is based on XML. XML is widely accepted and XML parsers exist on
virtually all software platforms

� It uses XML schemas to provide type information rather than a programming
language specific type system

� It restricts itself to the presentation layer (layer 7) of the ISO communication
stack which makes it relatively easy to implement:

– The specification is relatively small

– The basic SOAP protocol doesn’t get bound up in network and platform
specifics.

� It supports different interaction styles (principally request-response, one-way)
and both RPC and messaging (or document) types of interface.

It combines in one architecture the interaction styles predominantly used by
distributed components within an application (RPC) on the one hand, and by
applications integrated together within a solution (Messaging), on the other.
SOAP has provided a common protocol for two communities of programmers
who are finding themselves increasingly working together driven by the
business potential of the Internet.

� SOAP has been almost universally implemented on Http: making SOAP/Http:
available on most platforms. This sounds like saying SOAP is successful
because it is successful! And so it is: the “network effect” has favored
SOAP/http. Initially, the simple marriage of SOAP to the Internet, via Http,
was crucial in SOAP/http adoption by vendors - because it worked.

� Does it work well enough for adoption by enterprises? The evidence
(Figure 7-1 on page 115) points to the technology breaking through, at least
on the intranet. There is a widespread belief that it will be good enough for
Internet and intranet applications. But we can’t yet say that SOAP is used
widely in production. Deployment on the intranet leads over deployment on
the Internet by a wide margin reflecting probably two things

– Trialing in a more controlled environment which puts a company’s value
less at risk

– Need for more secure and robust qualities of service on the Internet

24 WebSphere and .Net Interoperability Using Web Services

� Which leads to the last important characteristic: SOAP is extensible. It has
changed since it was first conceived around 1997, and it needs to continue to
change to meet the needs of solution integration.

 Chapter 2. SOAP primer 25

26 WebSphere and .Net Interoperability Using Web Services

Chapter 3. WSDL primer

The Web Service Description Language (WSDL) was created shortly after SOAP
to describe Web services. WSDL describes:

� The information carried in a Web service request

� How the Web service is realized by a particular protocol, such as SOAP over
Http:

� The location of the service

The structure of this information is illustrated in Figure 3-1 on page 28. The
discussion that follows is not a complete description of the specification, but is
sufficient to understand how WSDL and SOAP are related, and to be able to
interpret WSDL documents produced by WebSphere Studio Application
Developer or Microsoft Visual Studio .Net 2003.

A full definition of WSDL 1.1 is available from W3C at:

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

3

© Copyright IBM Corp. 2005. All rights reserved. 27

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

3.1 Structure of WSDL definitions

Figure 3-1 Structure of a WSDL document

1. WSDL definition

A WSDL definition is an XML document, or a number of documents that can
be imported to compose a complete WSDL definition. The WSDL definition
has a target namespace to identify all its elements.

2. Logical elements

The logical elements describe the information in the Web service. They are:

a. Data types used in messages.

Types are described using schema definitions. SOAP encoding is an
alternative, in which case a type section is unnecessary. The WSDL
standard allows the use of alternative type grammars to XML schema.

The schema definition can be imported rather than provided inline in the
WSDL document.

b. Messages exchanged in requests and replies.

Each message has a name by which to refer to it, and one or more
message parts. The parts are just a way of assembling the message from
different elements or types. You can have anything between one part and
a single complex type, or many parts and simpler elements.

A part has a name by which to refer to it, and either the element name or
type it refers to in a type definition.

c. portTypes (called Interfaces in WSDL 1.2) are collections of operations.
portTypes and operations each have names.

Each operation can have three message types, an input, output and fault
message type which can also be named. For each message type, the
operation refers to one of the message definitions given previously.

28 WebSphere and .Net Interoperability Using Web Services

3. Realization

The realization of a logical Web service comes in two parts:

a. Binding to a specific protocol

Extra protocol-specific information is added to the Web service definition,
such as whether the WSDL is to be mapped to a SOAP message using
the Document or RPC-Styles.

Common to all protocol bindings are:

i. Naming the binding

ii. Associating it with a portType

iii. Specifying the operations supported by the binding (by referring to the
appropriate portType)

iv. Providing optional binding specific Input, Output and Fault attributes for
each operation

b. Addressing a specific Service instance (a Service endpoint)

Service endpoints are called Ports.

What follows is a discussion of the specific binding extensions for the SOAP
binding. The SOAP binding is not limited to Http: but that is the only transport
we will consider in this section because it is the only transport referred to in
the WS-I 1.1 profile.

a. SOAP binding

A SOAP binding specifies the style of the SOAP message, document or
RPC, as well as the type of transport defined for the binding as a whole.

Example 3-1 The SOAP RPC binding

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

Each operation in the portType that is defined in the binding is qualified by
providing a SOAPACTION attribute to assist in routing the operation, and
an override for the style of the operation (RPC or Document).

For the input and output parts of the operation, the binding provides more
attributes specifically for the SOAP Body, for the SOAP Header and for
Headerfaults.

The additional attributes of the Input and Output parts have identical
attributes. The fault part is simpler than the Input and Output parts so we
will just concentrate on those, particularly on the Body. Let us see how the
binding specifies the appearance of the Body in a SOAP message.

How the Body appears will depend on whether the message style is
Document or RPC. If the style is RPC then each part of the message is

 Chapter 3. WSDL primer 29

treated as a separate parameter, or the return value. The message is
“wrapped” inside an additional element that is created with the name of the
operation and takes its namespace from the binding’s Body attribute. If the
style is Document then the message parts are created directly as the
SOAP Body element.

The Body attribute also defines whether the SOAP message elements are
literal or encoded, and, if encoded, what the encoding style is. There is
also the capability to filter out some of the message parts. Not all of the
parts defined for a message need actually appear in the generated SOAP
message.

The header and headerfault attributes enable headers and header faults
to be defined.

The fault part of the operation defines how a fault message should be
encoded.

b. Services

The service section of the WSDL definition collects together all the port
definitions. As we have seen in the specific SOAP/Http: binding we are
considering, the transport is defined to be
"http://schemas.xmlsoap.org/soap/http".

The port definition couples a specific binding identified by name with a
SOAP-specific address in the form <soap:address location="uri"/>.
There is an example of a SOAP Service definition in Example 3-2 on
page 32.

3.2 Examples of WSDL definitions
We will use the example that is described later in this redbook to illustrate the
relationship between a WSDL definition and generated SOAP messages. The
WSDL was generated by WebSphere Studio Application Developer. For a
comparison, we will look at the same application using first the Document/Literal
style of WSDL and then compare some aspects with the RPC/Literal style.

3.2.1 Document/Literal Style
Figure 3-2 on page 31 shows the schematic view of a WSDL definition from
WebSphere Studio Application Developer laid out to match the model in
Figure 3-1 on page 28.

30 WebSphere and .Net Interoperability Using Web Services

Figure 3-2 Document/Literal style WSDL

We will walk through the WSDL, examining the RegisterClaim request that is part
of the example we will be building. At this time, you can follow the walk-through
by refering to Figure 3-2.

1. At the top of Figure 3-2, you can see there are no import files.

2. By clicking the Definitions heading, you will see the namespaces in a
pop-up. Figure 3-3 shows the namespaces that were defined and used in the
the RegisterClaim example.

3. The Types elements show the namespaces that are defined in the Types
section of the WSDL file.

Figure 3-3 Namespaces

1

2

3

4

5 6 7

 Chapter 3. WSDL primer 31

4. The Services section points to the binding and names the SOAP port. In
Example 3-2, the local IDs, such as wsdl:, match the namespace
declarations in Figure 3-3 on page 31.

Example 3-2 Service definition

<wsdl:service name="LGIClaimRegistrationService">
 <wsdl:port binding="intf:LGIClaimRegistrationSoapBinding"

name="LGIClaimRegistration">
 <wsdlsoap:address

location="http://localhost:9080/ItsoClaimRouterWeb/services/LGI
ClaimRegistration"/>

 </wsdl:port>
 </wsdl:service>

5. In Example 3-3, we have picked out the RegisterClaim operation input part to
look at the Binding section. The Binding is named, and points at the
intf:LGIClaimRegistration portType.

The Document-Style and SOAP transport are specified. The operation name
registerClaim will match the operation name in the intf:LGIClaimRegistration
portType. The input name also matches the input name in the portType. A
SOAPACTION string is provided for the operation.

Example 3-3 SOAP binding

<wsdl:binding name="LGIClaimRegistrationSoapBinding"
type="intf:LGIClaimRegistration">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

...
<wsdl:operation name="registerClaim">

<wsdlsoap:operation SOAPACTION=""/>
<wsdl:input name="registerClaimRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>

...
</wsdl:operation>

</wsdl:binding>

6. The portType is straightforward. The operations findCustomer and
registerClaim included in the portType are displayed in Figure 3-2 on page 31.

7. The registerClaimRequest message defines the part parameters which points
to the intf:registerClaim element illustrated in Figure 3-4 on page 33.

32 WebSphere and .Net Interoperability Using Web Services

Figure 3-4 Types

8. Figure 3-5 shows the SOAP message which is generated by this WSDL.

Figure 3-5 SOAP message generated from Document/Literal WSDL

3.2.2 RPC/Literal Style
The SOAP message generated by RPC/Literal is shown in Figure 3-6 on
page 34.

<?xml version="1.0" encoding="UTF-8" ?><SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://ejb.claim.examples.itso"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
 <q0:registerClaim>
 <q0:customerID>123</q0:customerID>
 <q0:policyID>abc</q0:policyID>
 <q0:accidentDate>2004-10-20T08:03:34.985Z</q0:accidentDate>
 <q0:accidentDescription>Hit stationary object</q0:accidentDescription>
 <q0:involvedCars>Alvis</q0:involvedCars>
 </q0:registerClaim>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Name of schema element

Target namespace from WSDL

 Chapter 3. WSDL primer 33

Figure 3-6 SOAP message generated from RPC/Literal WSDL

The outline of the WSDL in Figure 3-7 is only a little different from Figure 3-2 on
page 31.

Figure 3-7 RPC-Style WSDL

Rather than stepping through the WSDL again in detail, let us just look at the
three salient differences:

1. The most obvious difference is in the message structure (see Example 3-4 on
page 35). This is a result of the registerClaimRequest message being
constructed from multiple parts containing simple types in the RPC case. In
the previous example, a single complex type was referenced to construct the
message.

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns0:registerClaim xmlns:ns0="http://ejb.claim.examples.itso">
 <customerID>123</customerID>
 <policyID>weta</policyID>
 <accidentDate>2004-10-20T08:19:12.924Z</accidentDate>
 <accidentDescription>Hit Stationary object</accidentDescription>
 <involvedCars>
 <item>Alvis</item>
 </involvedCars>
 </ns0:registerClaim>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Outer element is the binding operation name

namespace from binding-operation

No target namespace

34 WebSphere and .Net Interoperability Using Web Services

Example 3-4 Message definitions

From the RPC-Style WSDL
<wsdl:message name="registerClaimRequest">
 <wsdl:part name="customerID" type="xsd:string"/>
 <wsdl:part name="policyID" type="xsd:string"/>
 <wsdl:part name="accidentDate" type="xsd:dateTime"/>
 <wsdl:part name="accidentDescription" type="xsd:string"/>
 <wsdl:part name="involvedCars" type="intf:ArrayOf_xsd_string"/>
</wsdl:message>
From the Document-Style WSDL
<wsdl:message name="registerClaimRequest">
 <wsdl:part element="intf:registerClaim" name="parameters"/>
</wsdl:message>

2. In the portType, the RPC-Style includes the parameter order for each
operation, that is:

<wsdl:operation name="registerClaim" parameterOrder="customerID policyID
accidentDate accidentDescription involvedCars">

3. In the binding, the binding style is now RPC rather than Document.

Example 3-5 Binding style differences

From the RPC-Style WSDL
<wsdl:binding name="LGIClaimRegistrationSoapBinding" ...
<wsdlsoap:binding style="rpc" .../>
From the Document-Style WSDL
<wsdl:binding name="LGIClaimRegistrationSoapBinding" ...
<wsdlsoap:binding style="document" .../>

3.3 Future considerations
WS-I basic profile 1.1 references WSDL 1.1. But WSDL will change: WSDL 2.0 is
in the process of being drafted. It completed its last call working draft on October
4th, 2004. The next standardization step for the specification is as a proposed
candidate standard to W3C.

WSDL is no longer seen as a complete description of a SOAP message. Other
WS-* meta-data specifications have been published which complement WSDL,
particularly WS-Policy and WS-meta-dataExchange. These are discussed
further in Chapter 7, “Web services roadmap” on page 113.

 Chapter 3. WSDL primer 35

3.4 Summary: salient interoperability features of WSDL
In summary, what are the features of WSDL that have made it a good language
for specifying interoperable application interfaces? Some of these features mirror
those of SOAP:

1. It is based on XML. XML is widely accepted and XML parsers exist on
virtually all software platforms.

2. It uses XML schemas to provide type information rather than a programming
language specific type system (for the purists, WSDL is not tied to use XML
schemas as a typing system, but the flexibility given to WSDL to use other
typing systems has not been a factor in improving interoperability).

The switch from using SOAP-encoding to using standard XML schemas
(XSDs) for type definition was ratified in the WS-I Basic profile1. It improves
interoperability by removing some ambiguities in SOAP encoding; also, by
reusing XML schema that are also used elsewhere for type definition, it
leverages existing tooling support for XSD, and developers have been able to
reuse existing XSDs.

3. WSDL is an interface definition language, something it has in common with its
predecessors, such as IDL.

The innovation that distinguishes it from IDL is that in addition to defining
logical interfaces such as:

– Definitions (Types, Imports)
– Messages (Parts)
– portTypes (Operations)

it also defines the physical interfaces:

– Bindings (Protocol, Operation bindings)
– Services (Ports).

This has resulted in standardization of the physical format (“wire format”) of
SOAP messages, including both the way to map WSDL to a SOAP message,
and the way to map SOAP to the chosen transport.

So not only are abstract interfaces interchangeable between tools, but the
tools map WSDL to SOAP sufficiently closely so that the SOAP messages, if
not physically identical, have the same meaning. Also, the use of the
underlying Http: transport is sufficiently similar that (increasingly) SOAP
clients and servers really do interoperate without prior testing and debugging.

Interoperability works fairly well for SOAP/http: which has been thoroughly
studied and refined as part of the WS-I profile. It gets rather more theoretical

1 See “The argument against SOAP encoding”, Tim Ewald, MSDN Oct 2002, found at,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html/argsoape.as
p

36 WebSphere and .Net Interoperability Using Web Services

than practical for other protocols that have been added but not yet effectively
standardized. This leads to the next point: has the extensibility of WSDL
made it more or less a good basis for defining interoperable interfaces?

4. WSDL is extensible.

In the last point, we saw that the extensibility of WSDL results in vendors
defining extensions that do not always interoperate. But the extensions are
architecturally compatible. We mean by this that WSDL has been used to
define both standard and proprietary service interfaces in a common way.
Vendors are able to leverage much of the same tooling and runtime to
implement the extensions in addition to the standardized protocols. From a
user’s perspective, whether working with standard or extended capabilities,
the services framework doesn’t change.

From an interoperability perspective, having this extensibility capability is a
benefit over the alternative of freezing a specification and, at some point in
the future, making a quantum leap to an new standard. As we have seen,
SOAP and WSDL were not born perfectly formed. Extensibility is important in
modifying the standards to accomodate the needs of interoperability as the
scope of the standard is changed.

In general terms, the arguments in favor of extensibility of a specification are:

– The extensions will be easier to standardize in the future than if new
features are specified in a wholly new way.

– Having both standards and extensions coexisting in a compatible
specification is an effective way of tackling the problem that business
requirements tend to change faster than standards.

5. The scope of WSDL is stable.

Specifications need to be small enough to be practically stable for
implementation and revision within a reasonable timescale.

There are numerous additional Web service meta-data standards being
proposed to address security, addressing, introspection, and policy, to name
but a few. Many of these additional specifications result in additional XML
structures in a SOAP message. The meta-data to generate the additional
structure could just as well have been specified in WSDL whereas in fact the
new SOAP structures derive from a different meta-data specification, such as
WS-Policy.

By choosing to create new specifications for these meta-data extensions
rather than adding to the WSDL specification, the focus of the WSDL
specification has been to solve today’s interoperability problems, rather than
to introduce new capabilites.

 Chapter 3. WSDL primer 37

38 WebSphere and .Net Interoperability Using Web Services

Chapter 4. Web services primer

In this chapter, we look at Web service concepts and then compare Web services
with software components, Service-Oriented Architecture and the Enterprise
Service Bus.

4

© Copyright IBM Corp. 2005. All rights reserved. 39

4.1 Web services concepts
Web services are self-contained applications that are published, located,
described and invoked over the Internet or intranet.

Web services perform business functions, ranging from a simple query to
complex business process interactions. A Web service can be built from the
ground up as a new application or an existing legacy system can be
re-engineered to make it Web service enabled.

There are three main participants in the generic Web service pattern.

Figure 4-1 Web services roles and operations

1. The service provider creates and hosts a Web service and possibly publishes
its interface and access information to the service registry, such as to a UDDI
registry.

The service provider decides which services to expose to the Internet, to
extranets or to intranets, manages the access to the service, and provides
information about the service to the service broker.

2. The service broker (also known as the service registry) is responsible for
making the Web service interface and implementation access information
available to any potential service requestor. Typically, a broker, such as a
UDDI registry, contains information to identify the service and points back to
the service provider for obtaining details about the service interface.

The implementers of a broker have to decide about the scope of the broker.
Public brokers are available all over the Internet, while private brokers are
only accessible to a limited audience, for example, users of a company-wide

Service
Requestor Internet Service

Provider

Legacy
system

Service
Broker

1

3

2

40 WebSphere and .Net Interoperability Using Web Services

intranet. Furthermore, the width and breadth of the offered information has to
be decided. Some brokers will specialize in breadth of listings. Others will
offer high levels of trust in the listed services. Some will cover a broad
landscape of services, and others will focus within a given industry. Brokers
also exist that simply catalog other brokers. Depending on the business
model, a broker may attempt to maximize look-up requests, number of
listings, or accuracy of the listings.

3. The service requestor (the Web service client) locates entries in the broker
registry using various find operations and then connects to the service
provider in order to invoke one of its Web services.

One important issue for users of services is the degree to which services are
statically chosen by designers compared to those dynamically chosen at
runtime. Even if most initial usage is largely static, any dynamic choice opens
up the issues of how to choose the best service provider and how to assess
quality of service. Another issue is how the user of services can assess the
risk of exposure to failures of service suppliers.

Web services are sometimes created as brand new software components, but
more frequently are composed of existing (“legacy”) systems. The Web service
provider may expose the Web service interface on a gateway server and connect
the gateway to the legacy systems using an enterprise service bus.

4.1.1 What is a Web service?
Let’s turn to the W3C Web services Architecture Working Group. In
http://www.w3c.org/TR/ws-arch/#whatis, they define a Web service succinctly
as:

“... a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.”

What does this definition mean? Let’s examine the definition in more detail.

� “[A Web service is] a software system ...”

Any software system can be a Web service. Web services are technology-,
language- and platform-independent. The software system could be a
WebSphere Enterprise JavaBean, a Microsoft .Net class, a CICS®
transaction, a WebSphere MQSeries Workflow; virtually any existing software
system can be turned into a Web service.

 Chapter 4. Web services primer 41

http://www.w3c.org/TR/ws-arch/#whatis

Figure 4-2 Software systems

� “... designed to support interoperable machine to machine interaction over a
network.” ...

A Web service is designed to be used over a network and is invoked using a
well-defined network protocol. A Web service needs to be a coarse-grained
software component which implements a self-contained service.

� “It has an interface described in a machine-processable format (specifically
WSDL)”

A Web service is intended to be used in a distributed application that could
well be provided by a third party. They must be able to rely solely on
information that is published in the UDDI and as WSDL to build their client for
the service.

� “Other systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.”

The WSDL binding defines the Internet protocols used to invoke the Web
service, usually a SOAP binding specifying Http: as the transport protocol.
Both parts of the interface are illustrated in Figure 4-3 on page 43.

42 WebSphere and .Net Interoperability Using Web Services

Figure 4-3 Software systems as Web services

4.1.2 Web services technologies
The following are the core technologies used for Web services.

� XML (eXtensible Markup Language) is the markup language that underlies
most of the specifications used for Web services. XML is a generic language
that can be used to describe any kind of content in a structured way,
separated from its presentation to a specific device.

� SOAP (Simple Object Access Protocol) is an XML-based network, transport-,
programming language and platform-neutral protocol that allows a client to
call a remote service.

� WSDL (Web services description language) is an XML-based interface and
implementation description language. The service provider uses a WSDL
document in order to specify the operations a Web service provides, as well
as the parameters and data types of these operations. A WSDL document
also contains the service access information.

� UDDI (universal description, discovery, and integration) is both a client-side
API and a SOAP-based server implementation that can be used to store and
retrieve information about service providers and Web services.

4.1.3 Web service properties
Web services have properties which fit them well for use in an on demand
environment:

 Chapter 4. Web services primer 43

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, only a Web server and a SOAP server are required. It is
possible to Web services enable an existing application without writing a
single line of code.

� Web services are self-describing.

WSDL contains all the interface information needed to build both the client
and the server side of a Web service. A service provider can publish all the
information that developers need to understand how to build and deploy Web
service clients using the UDDI repository and meta-data definitions, such as
WSDL.

� Web services can be published, located, and invoked across the Web.

This technology uses established lightweight Internet standards such as
HTTP. It leverages the existing infrastructure. It is firewall-friendly.

� Web services are language-independent and interoperable.

Client and server can be implemented in different environments. Existing
code does not have to be changed in order to be Web service enabled. In this
publication, however, we assume that Java is the implementation language
for both the client and the server side of the Web service.

� Web services are inherently open and standard-based.

XML and HTTP are the major technical foundation for Web services. A large
part of the Web service technology has been built using open-source
projects.Therefore, vendor independence is a realistic goal this time.

� Web services are composable.

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
higher-level business functions. This shortens development time and enables
best-of-breed implementations.

� Web services are built on proven technology.

The concepts behind Web services have been proven in earlier distributed
computing models. Web services architects have also learned from the
problems of complexity of earlier distributed computing models, and have
been built on top of proven and ubiquitous standards such as XML, Http: and
the Internet.

44 WebSphere and .Net Interoperability Using Web Services

� Web services are built up from a simple foundation.

The basic Web service foundation has no bells and whistles; security,
reliability, state management and other extensions are additional to the
foundation. The layering helps to achieve interoperability in practical stages.

� Web services enjoy widespread support.

All the major software vendors endorse Web services. Many users of Web
services have become members of Web service bodies and the Web services
Interoperability council (WS-I). Gartner, Inc. reports that 40-50% of the Web
services audience uses SOAP and 80% of Gartner, Inc.’s Application
Integration and Web service conference attendees.

� Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at
both ends. This is true both of development and production. Web services
require a simpler level of coordination that allows a more flexible
re-configuration for an integration of the services in question.

� Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code
level. Service consumers have to know the interfaces to Web services but do
not have to know the implementation details of services.

� Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily be integrated into the
Service-Oriented Architecture by implementing a Web service as an interface.

4.2 Web services and component architectures
The WSDL binding is one of the key ways a Web service differs from a software
component. A software component can be a Web service, the difference being
that whereas a Web service is invoked using the binding information in its WSDL
definition, the means of invoking a software component is implicit. A software
component may exploit local linkage mechanisms, or it could be distributed over
protocols such as IIOP or COM+ that tie it to a specific software system. The
means of invoking a Web service can by various - it is defined in its WSDL
definition.

For a Web service, both the interaction protocol and the service interface are
specified in the WSDL definition. Taken together these definitions allow Web
services to be composed into a solution without regard to how they were built or
in what environment they are running.

 Chapter 4. Web services primer 45

A deployed Web service is available to clients who are authorized to use it and
support the same protocol as specified in the binding.

By comparison, systems viewed as software components have to have a shared
knowledge of a mechanism for components to interact with one another. The
knowledge of the mechanism enabling requester and provider to communicate is
outside the scope of the software component definition.

Interaction between components is managed either by their component
containers, or, where no container is provided, by custom designed bridges or
connectors between the components, as shown in Figure 4-4.

Figure 4-4 Software systems as components

4.2.1 Choosing between Web services and software components
The choice between composing an application from Web services, and building
an application from components comes down to weighing factors such as:

� Heterogeneity of the operating environments.

� Desired openness of the interaction protocols.

� Coupling of the components.

� What qualities of service required, such as security, performance and
robustness.

� Ease of use: what are the strengths or weaknesses of the tooling for
composing a solution made up of software components compared with the
tooling for Web service?

As long as an application is only going to be composed of components running in
a common container, such as Java 2 Enterprise Edition or Microsoft .Net, there
will be less value from using Web services. However, when interactions need to

46 WebSphere and .Net Interoperability Using Web Services

take place between different software environments, it becomes a lot harder to
use software components and Web services should be considered.

Web services are also likely to be preferable if the software component is to be
used in an unmanaged environment such as the Internet, or where the costs of
management are high, such as between two organizations connected by an
extranet. In these environments any coupling of technologies between partners
creates additional costs that grow as coupling tends to increase with time. Web
services helps to reduce this cost by defining interfaces between services that
can be implemented in different technologies and reduces the coupling between
partners. The key concept here is one of “Governance.” Governance is the term
given to an organization’s sphere of control. Web service architectures decouple
a solution from the technologies used to implement it. A Web service architecture
gives the partners in a solution to freedom to choose their own technologies and
software suppliers.

In an unmanaged environment, Web services have a very clear advantage over
distributed solutions built from proprietary software components. But even in a
managed environment, Web services may offer a practical and lower cost
alternative to building a bridge, adapter or broker to link different software
components.

As a case study to illustrate the possible benefits offered by Web services in a
managed environment, let’s examine the steps involved in building a bridge
between a Java 2 Enterprise Edition system and an Enterprise Information
System (EIS). As an example of a software component architecture, we will
make use of the Java Connector Architecture (JCA) and describe the process of
connecting WebSphere to the EIS and compare it to using a Web services
approach.

Building a JCA connector between software environments
The JCA standard specifies the way to build a connector between a Java 2
Enterprise Edition system and an typical EIS such as CICS or SAP. A connector
implemented to the JCA specification will connect any compliant Java 2
Enterprise Edition server to a specific target EIS such as CICS.

Rather than build their own JCA connectors enterprises are likely to purchase
toolkits based on a pre-packaged JCA connector, such as the IBM WebSphere
Business Integration Adapter for mySAP.com, or the CICS gateway, rather than
implement their own JCA components.

Figure 4-5 shows the steps involved in integrating two EIS with a Java 2
Enterprise Edition server. The adapter vendor:

1. Builds two JCA connectors, one for each EIS.

 Chapter 4. Web services primer 47

2. Selects and builds EIS specific means of connecting to the target systems.

3. Makes available different configuration choices about how to connect to an
EIS. The enterprise learns how to install and manage the connections

4. Creates tooling to integrate the connectors with the development
environments used to build solutions for the Java 2 Enterprise Edition server.

There is no standard way to do this. The interface the developer sees
depends upon:

a. How the EIS interfaces are described in the EIS,
b. How the EIS presents the interfaces to the development tools
c. How the provider of the Integrated Development Environments (IDEs) for

the Java 2 Enterprise Edition system plugs in new tooling to the IDE.

Figure 4-5 Integrating two EIS using JCA

48 WebSphere and .Net Interoperability Using Web Services

With the multiplicity of environments to support, particularly in step 4, software
vendors have typically opted to build a separate adapter server. Rather than
having to interface different applications servers to different EISs, it becomes a
question of porting just the interface to the adapter server. This is the architecture
adopted for the first version of the IBM WebSphere Business Integration
Adapters.

Connecting software environments using Web services
Now let’s see how Web services promise to simplify the problem of connecting
two complex software environments.

Figure 4-6 Integrating two EIS using Web services

1. SOAP provides the interoperability of the runtime. There are no additional
gateway or adapter servers to deploy that need custom configuration by
specialists.

2. WSDL provides the standard way to describe the EIS binding and operational
interfaces of a Web service. Skills and tooling used to build solutions
composed of services on one EIS should be transferable to building solutions
using services of another EIS.

 Chapter 4. Web services primer 49

3. UDDI and WSIL (see “WS-Inspection” on page 136) are less well established
than SOAP and WSDL but they do provide a solution to deploying service
descriptions in a standardized way. The descriptions can be accessed using
tools from any vendor to deploy and manage connectors.

In contrast, the location and type of meta-data necessary to build parts of a
component based solution are scattered in different locations depending on
the vendor. The runtime configuration information will be similarly
vendor-specific.

4. Most importantly, vendors such a SAP, PeopleSoft, Intentia and others are
investing in Web services. These are currently offered as an alternative to
their Enterprise Application Integration (EIA) solutions.

4.3 Service-Oriented Architecture
Most enterprises are facing the challenges of cutting costs and maximizing the
utilization of existing technology, while continuously serving customers better,
being more competitive, and being more responsive to the business's strategic
priorities.

Heterogeneity and change are two underlying themes behind all of these
pressures. Organizations contain a range of different systems, applications, and
architectures of different ages and technologies. Integrating products from
multiple vendors and across different platforms is almost always a nightmare. But
we also cannot afford to take a single-vendor approach to IT, because application
suites and the supporting infrastructure from a single vendor can be so inflexible.

Change is the second theme underlying the questions that today's IT executives
face. Globalization and e-business are accelerating the pace of change.
Globalization leads to fierce competition, which leads to shortening product
cycles, as companies look to gain advantage over their competition. Customer
needs and requirements change more quickly, driven by competitive offerings
and wealth of product information available over the Internet. In response the
cycle of competitive improvements in products and services further accelerates.
Improvements in technology continue to accelerate, feeding the increased pace
of changing customer requirements. Business must rapidly adapt to survive, let
alone to succeed in today's dynamic competitive environment, and the IT
infrastructure must enable businesses' ability to adapt.

As a result, business organizations are evolving from the vertical, isolated
business divisions of the 1980's and earlier, to the horizontal
business-process-focused structures of the 1980s and 1990s, towards the new
ecosystem business paradigm. Business services now need to be

50 WebSphere and .Net Interoperability Using Web Services

componentized and distributed. There is a focus on the extended supply chain,
enabling customer and partner access to business services.

How do we make our IT environment more flexible and responsive to the ever
changing business requirements? How can we make those heterogeneous
systems and applications communicate as seamlessly as possible? How can we
achieve the business objective without bankrupting the enterprise? The IT
answers/enablers have been evolving in parallel with this evolution of business,
as shown in Figure 4-7. Currently, many IT executives and professionals believe
that now we are getting very close to providing a satisfactory answer with
Service-Oriented Architecture.

Figure 4-7 The evolution of architecture

In order to alleviate the problems of heterogeneity, interoperability and ever
changing requirements, such an architecture should provide a platform for
building application services with the following characteristics:

� Loosely coupled
� Location transparent
� Protocol independent

Based on such a Service-Oriented Architecture, a service consumer does not
even have to worry about a particular service it is communicating with because
the underlying infrastructure, or service “bus,” will make an appropriate choice on
behalf of the consumer. The infrastructure hides as many technicalities as
possible from a requestor. Particularly technical specificities from different
implementation technologies such as J2EE or Microsoft .Net should not affect
the SOA users. We should also be able to reconsider and substitute a “better”
service implementation if one is available, and with better quality of service
characteristics.

4.3.1 Components of a Service-Oriented Architecture
Service-Oriented Architecture presents an approach for building distributed
systems that deliver application functionality as services to either end-user
applications or other services. It is comprised of elements that can be

 Chapter 4. Web services primer 51

categorized into functional and quality of service. Figure 4-8 shows the
architectural stack and the elements that might be observed in a
Service-Oriented Architecture.

Figure 4-8 Elements of Service-Oriented Architecture

The architectural stack is divided into two halves, with the left half addressing the
functional aspects of the architecture and the right half addressing the quality of
service aspects. These elements are described in detail as follows:

� Functional aspects include:

– Transport is the mechanism used to move service requests from the
service consumer to the service provider, and service responses from the
service provider to the service consumer.

– Service Communication Protocol is an agreed mechanism that the service
provider and the service consumer use to communicate what is being
requested and what is being returned.

– Service Description is an agreed schema for describing what the service
is, how it should be invoked, and what data is required to invoke the
service successfully.

Note: Service-Oriented Architecture stacks can be a contentious issue, with
several different stacks being put forward by various proponents. Our stack is
not being positioned as the services stack. It is just presented as a useful
framework for structuring the SOA discussion in the rest of the redbook.

52 WebSphere and .Net Interoperability Using Web Services

– Service describes an actual service that is made available for use.

– Business Process is a collection of services, invoked in a particular
sequence with a particular set of rules, to meet a business requirement.
Note that a business process could be considered a service in its own
right, which leads to the idea that business processes may be composed
of services of different granularities.

– The Service Registry is a repository of service and data descriptions,
which may be used by service providers to publish their services, and
service consumers to discover or find available services. The service
registry may provide other functions to services that require a centralized
repository.

� Quality of service aspects include:

– Policy is a set of conditions or rules under which a service provider makes
the service available to consumers. There are aspects of policy, which are
functional, and aspects, which relate to quality of service; therefore we
have the policy function in both functional and quality of service areas.

– Security is the set of rules that might be applied to the identification,
authorization, and access control of service consumers invoking services.

– Transaction is the set of attributes that might be applied to a group of
services to deliver a consistent result. For example, if a group of three
services are to be used to complete a business function, all must complete
or none must complete.

– Management is the set of attributes that might be applied to managing the
services provided or consumed.

SOA collaborations
Figure 4-9 on page 54 shows the collaborations between the core elements of
the SOA.

� All elements use XML including XML namespaces and XML schemas.

� The service requestor and provider communicate with each other.

� WSDL is one alternative to make service interfaces and implementations
available in the UDDI registry.

� WSDL includes the workflow description (business process execution
language for Web services, BPEL4WS)

� WSDL is the base for SOAP server deployment and SOAP client generation.

 Chapter 4. Web services primer 53

Figure 4-9 Main building blocks in an SOA approach based on Web services

4.3.2 Services and Web services
What is the relationship of SOA to Web services?

SOA is an abstraction of Web services. SOA has adopted Web service concepts
such as WSDL, but SOA does not tie down the realization of a service to using
the SOAP binding or using Internet protocols. Figure 4-10 on page 55 shows the
idea of Service-Oriented Architecture bringing together different software
technologies under a unifying approach.

UDDI
(Broker)

SOAP

HTTP

J2EE other

other

ProviderRequestor

XSD

SOA Runtime

Metadata/vocabulary

Runtime
transports

Implementation

Service description
(including Worklflow)

XML BPEL4WSWSDL

54 WebSphere and .Net Interoperability Using Web Services

Figure 4-10 Implementations of services in a Service-Oriented Architecture

The most commonly agreed aspects of the definition of a service are that
services

� Are defined by explicit, vendor neutral, implementation-independent
interfaces.

� Are loosely coupled and invoked through communication protocols that stress
location transparency and interoperability.

� Encapsulate reusable business function.

Broadening the concept of a Web service to a service
Figure 4-11 on page 56 shows different services being used in a SOA.

1. Within a managed environment supporting different interaction protocols such
as IIOP and WebSphere MQSeries, SOA can provide more qualities of
service than available today than Web service using SOAP bound to Http.

2. Sometimes the deployment of a SOAP binding is not feasible, and a different
implementation of SOA offers the prospect of realizing some of the benefits of
Web services without incurring the costs of modifying existing legacy
applications to work in a SOAP environment.

An SOA also offers different interaction protocols, such as publish-subscribe
or event based paradigms that are not yet fully specified as Web services.

3. By declaring the behavior of interfaces in WSDL, and separating the service
binding from the service operational interface, applications can be composed

 Chapter 4. Web services primer 55

from services using the same interface definitions, regardless of the binding
of a service to a particular interaction protocol such as SOAP/http.

Figure 4-11 Mixing different SOA implementations

4. Web services are tied to a distributed point-to-point architecture, with no
central point of control. SOAs can be mapped to different topologies,
including hub-and-spoke and bus topologies that can manage mapping of
service requesters to service providers.

5. SOAs address a wider scope of requirements than Web services, providing a
framework for solving other important interoperability issues such as
transforming or adapting existing interfaces and providing management and
autonomic capabilities.

6. Web services are used in an SOA, particularly to connect to services outside
the local governance zone - to different departments in the enterprise, to
suppliers, partners or customers.

Why focus particularly on Web services?
What special position do Web services play in an SOA? Figure 4-12 on page 57
is a simplification of Figure 4-11 showing Web services being used across the
Internet, and also sharing the same infrastructure as the intra-enterprise service
bus.

56 WebSphere and .Net Interoperability Using Web Services

Figure 4-12 Use of Web services in SOA

The three points the diagram makes are:

1. Suppliers have universally adopted the Web services paradigm for SOA.
Other implementations of an SOA, while perhaps more capable, are
proprietary, so Web services will often be the service technology of choice
across the Internet.

“SOA is finally entering the enterprise mainstream. Several factors are
enabling this change ... The unanimous vendor acceptance of Web services
standards, especially the basic Simple Object Access Protocol (SOAP) and
Web Services Description Language (WSDL) specifications. Unlike CORBA
and DCE, Web services standards have no naysayers among vendors.”

2. SOAP/http has become a universal way of doing SOA on the Internet due to
the following factors.

– Universal availability of the http protocol on the Internet and in different
vendors’ enterprise software platforms

– Ability of SOAP to cross enterprise firewalls

– Expectation that SOAP/http based Web services will interoperate “out of
the box” between different vendors’ environments

Note: The above quote is taken from Roy Schulte’s Predicts 2003: SOA is
Changing Software. The PDF is currently available at:

http://www.gartner.com/resources/111900/111987/111987.pdf

 Chapter 4. Web services primer 57

http://www.gartner.com/resources/111900/111987/111987.pdf

– Business value of deploying services for use over the Internet

– Simplicity and low cost in deploying Web services to the Internet

3. Web service specifications are being standardized and proving to be
interoperable. The formation of the WS-I council to coordinate the
implementation of Web service standards, and its success in defining the
Basic Profile, augurs well for increasing the adoption of Web service
implementations to deliver a practical, interoperating SOA that satisfies the
needs of a large part of the SOA market.

From a standards perspective, the advantages of limiting the standardization of
SOA to Web services comes down to the practical consideration of making
implementations from different suppliers work together - the old adage of
“K.I.S.S” (Keep It Simple Stupid). Simpler specifications have a better chance of
being implemented consistently, and being interoperable, especially if the
specifications are based on protocols that already have widely accepted
currency.

On the other hand Web service specifications and implementations are
advancing in scope and complexity, and promise to meet many of the needs of a
broader SOA, as illustrated in the Web services specifications stack in Chapter 7,
“Web services roadmap” on page 113. It will take some time for these
specifications to be standardized, and then to be implemented in an
interoperable way. So for some time yet proprietary SOA alternatives will coexist
with Web services, and enterprises need to be able to use both Web services
and other implementations of SOAs where they are most appropriate.

The infrastructure concept that is has come to the fore to manage different types
of SOA implementation is called an Enterprise Service Bus (ESB).

4.4 Web services and the Enterprise Service Bus
The concept of an ESB was first described by Roy Schulte in the same paper as
cited above.

“ESB is a new architecture that exploits Web services, messaging middleware,
intelligent routing, and transformation”.

Roy Schulte’s description of an ESB identifies some of the main capabilities that
ESBs provide, and by inference some of the requirements that lie behind ESBs
such as,

� Unifying Web services with existing Message Oriented Middleware (MOM)
infrastructures

58 WebSphere and .Net Interoperability Using Web Services

� Overcoming the problems of managing the deployment and routing of Web
services and integrating with other types of services

� Improving the reuse and manageability of services by providing a
transformation service to mediate between different service requestor and
service provider interfaces

The Enterprise Service Bus is emerging as a service-oriented infrastructure
component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world. The relationships between Web services,
SOA and ESB are shown in Figure 4-13.

Figure 4-13 Relationships between Web services, SOA and ESBs

An ESB should provide a rich implementation of SOA as well as integrating
existing network architectures without diluting their capabilities. The goals, or
best of bred characteristics, of an ESB are listed below.

� Transparency
� Interoperability

Note: The redbook Patterns: Implementing an SOA Using an Enterprise
Service Bus, SG24-6346, published in July 2004, is a comprehensive
discussion of the ESB concept.

 Chapter 4. Web services primer 59

� Service discovery and addressing
� Co-existence
� Unified administration and management
� Security
� Robustness
� Scalability
� Problem determination

Let’s examine how each of these ESB characteristics relate to Web services
implemented to be compliant with WS-I basic profile 1.1, i.e using SOAP/http 1.1.

4.4.1 Transparency
At the interface between an ESB and a Web service provider or Web service
requestor is an ESB-Web service touch point. The touch point isolates the
requester from the provider. The requester is connected to an outward facing
Web service endpoint on the ESB and the provider is connected to the ESB. The
same is true in reverse - the ESB isolates a requestor on the ESB from an
external provider. Changes to the location the Web service does not affect its
requesters - the changes are managed at the ESB-Web service touch point.

For the designers of ESB implementations the challenge is to isolate the impact
of changes to the touchpoints and to provide administrative means to configure
touch points without requiring administration, redeployment or reprogramming of
the endpoints.

Web services comparison
If one contrasts the ESB connection model with Web services the difference is in
the level of isolation achieved. In the Web services model the service provider’s
interface is declared in its WSDL definition so that the requester can design the
right kind of connection to the provider. But once a simple connection has been
built the requester code will have been coupled to the provider. Changes to the
provider will require changes to all its requesters. To avoid this coupling more
sophisticated dynamic clients can be built. But fundamentally it is more
manageable to resolve the de-coupling issue at the provider rather than at the
requester end of the connection. (For a discussion of different relationship styles
in a SOA see section 3.2.1 “Coupling and de-coupling of aspects of service
invocations”, in Patterns: Implementing an SOA Using an Enterprise Service
Bus, SG24-6346.)

Note: This list is compiled from a number of sources, in particular “Identifying
best-of-breed characteristics in Enterprise Services Buses (ESBs)”, Steve
Craggs, June 2003, found at:

http://www.integrationconsortium.org/docs/member%20docs/BestofBreed_ESBs.pdf

60 WebSphere and .Net Interoperability Using Web Services

http://www.integrationconsortium.org/docs/member%20docs/BestofBreed_ESBs.pdf

4.4.2 Interoperability
An ESB provides a framework and tools to solve interoperability problems. The
interoperability problem may be that two Web service implementations do not
support the same levels of specifications; or it may be a Web service requester
needs to use a service provided as an EJB, a SAP IDOC, a CICS transaction or
a Microsoft .Net class rather than as a Web service. An ESB provides bridge
between different protocols, as well as runtime support and tooling for mediating
different data formats, different qualities of service, and different application
protocols.

Figure 4-14 Interoperability: Use ESB or Web services?

Web services comparison
A typical Web service scenario involves creating a new service requester to work
with an existing service provider (see Figure 4-14). Web services specifications
are not focused on making existing requesters and providers interoperate, but on
enabling the creation of providers that will work with many different requesters as
long as they are all built to the same provider interface. The Web service goal is
that “anonymous” services, deployed over the Internet, will work with clients
however they are built, as long as they implement the interfaces described in the
Web service’s WSDL definition.

ESBs, on the other hand, also have the objective of enabling existing services
which have different interfaces interoperate, and to manage changes to service
interfaces.

4.4.3 Unified service discovery and addressing
The discovery and addressing of services by a client of the ESB should follow the
same rules regardless of where the service is hosted and how it is addressed by
the ESB on behalf of the client. The ESB manages which interfaces are made

 Chapter 4. Web services primer 61

visible to service requesters and publishes these interfaces as WSDL to isolate
clients from the how and the where of hosting a service.

The ESB also manages the flow of a message to and from the Web service
endpoint addressed by the service requester and the actual service provider. The
request message could go through a number of nodes and processes. The
response message may retrace its path through the ESB, or take a different path
through the ESB back to the requester.

Web services comparison
As well as using Web services to publish the touch point between a requester
and an ESB, an ESB can use Web service specifications to architect how to
identify intermediate processing nodes (in SOAP 1.2) and also how to pass
addressing information in a SOAP message so as to be able to return to the
same processing node in a return path, or return to the same endpoint
transparently to the Web service client. (See 8.3, “Interoperability standards:
addressing” on page 155).

4.4.4 Coexistence
An ESB supports applications using different styles of integration.

� SOA - not limited to Web services, but also supporting non-SOAP bindings

� Message-driven architectures in which applications send messages through
the ESB to receiving applications. The ESB may physically incorporate
existing MOM channels of communication without change

� Event-driven architectures in which applications generate and consume
messages independent of one another

An ESB enables Web services to interact with applications using these other
styles of communication where it makes sense to do so.

Web services comparison
There are Web service specifications for event and notification styles of
interaction emerging (see “WS-Notification” and “WS-Eventing” on page 127).

4.4.5 Single point of control
An ESB aims to bring different SOAs under a single administrative umbrella so
that all the moving parts involved in integrating a solution comprising Web
services, some MOM components, an adapter to an EIS, some Microsoft .Net
classes and some enterprise services using EJBs are configured within one
administrative framework. The ESB administrator is responsible for creating the

62 WebSphere and .Net Interoperability Using Web Services

ESB topology, defining connection points and deciding services are deployed on
each node and which ones are published outside the ESB.

Web services comparison
Web services are composed of autonomous clients and servers with
point-to-point connections. The administrative model is essentially distributed.
Services are published to centralized UDDI registries. The public registries have
very little control. But private UDDI servers can be built to manage the
deployment of Web services within a governance domain.

4.4.6 Security
ESBs aim to provide a managed and trusted environment for the execution of
services. In collaboration with third party security servers, the ESB Administrator
needs to provide:

� Bus boundaries where security and access is managed by Reverse Proxy
Security Servers (RPSS), and tools to assist in (for example) filtering out
hackers, and limiting the impact of denial of service attacks

� Web Trust Association (WTA) through the management of trust, security
context and access onto and from the bus. This shares out the development
and runtime overhead of security management between services - reducing
the security overhead of calling multiple services in the same security
domain.

� Provision of security services, such as logging, to assist in detection and
analysis of security breaches

Web services comparison
Web service security specifications provide the means for securing exchanges
between Web service requester and provider (see “Security” on page 158).

An ESB also needs to map Web services security to the access, privacy and
authentication mechanisms of other services that are sharing the bus.

4.4.7 Robustness
There are a two distinct aspects of robustness to consider in an SOA:

� Transactionality of the interaction model
� Service Availability

Transactionality
An ESB uses a variety of different transactional implementations such as the
Java Transaction API (JTA) in J2EE to do one, two and distributed two-phase

 Chapter 4. Web services primer 63

commits, JMS or WebSphere MQSeries to provide the distributed three units of
work model, and execution of Business Process Execution Language (BPEL) to
provide business agreement models.

Web services comparison
Web services provide transactional interface specifications that are described in
WS-Coordination and “WS-Transactions” on page 179 and “Reliable messaging”
on page 182. An ESB can implement the Web service transaction specifications
using all the transactional implementations it supports - and in so doing provide
transactional interoperability between environments supported by the ESB as
well as extending transactionality to Web services outside the ESB.

Service availability
Part of an ESB implementation is to integrate Web services with its
implementation of clusters of servers, alternative network paths and provision for
hot failover.

Web services comparison
Web services standards describe interfaces and rely upon the capabilities of the
underlying platforms and networks for availability of services and redundant
network paths to the services. There are no Web services specifications that are
relevant to service availability.

4.4.8 Scalability
Scalability has an administrative as well as a performance dimension.
Administratively an ESB provides a centralized, or federated, means managing
services. From the performance perspective an ESB makes use of underlying
platforms to provide load-balancing transparently to Web service clients.

Web services comparison
From one perspective, Web services have highly scalable distributed
administration, in the sense that no more effort is required to deploy the
thousandth Web service than the first one. However, from another perspective
unless there is a centralized deployment, management of Web services is
problematic. Something like an ESB, or a cluster of centrally administered
application servers is essential to managing Web services.

From a throughput perspective Web services can be scaled using the Tcp/ip
based approaches used to scale up Web sites, or using scalability capabilities
built into the application server. There are not Web service specifications that are
relevant to scalability, except perhaps WS-Addressing which can be used with
load balancing to provide server affinity - see 8.3, “Interoperability standards:
addressing” on page 155.

64 WebSphere and .Net Interoperability Using Web Services

4.4.9 Problem determination
The ESB, as an infrastructure for SOA, should provide problem determination
tools, such as monitoring the availability and performance of services, tracing
Web service requests, and logging and correlating their execution on different
nodes.

Web services comparison
The Web services specification that help with problem determination is the
proposal for WS-Manageability (see “Management” on page 166).

4.4.10 Conclusions: Web services, the ESB and service buses
The comparison between Web services and the ESB has illustrated these are
different but related animals. Web services specifications have the principle
objective of enabling the development of services without regard for the software
platform, and with the minimum of contact between the service provider and
service requester beyond what is published along with the service in meta-data.
The ESB has, as we have seen, broader objectives, in particular to decouple the
addressing of clients from servers and to provide control over the service bus
itself.

This is the same conclusion as reached by the authors of Patterns: Implementing
an SOA Using an Enterprise Service Bus, SG24-6346, who have examined the
capabilities of service buses in depth in their section 4.3 “A capability model for
the Enterprise Service Bus”. They also make the point that basic SOAP/Http and
WSDL are not an ESB.

The <WS-I Basic Profile 1.1 compliant> service bus
Nonetheless the ability to seamlessly plug together service requesters and
service providers that conform to the WS-I basic profile 1.1 is a useful defining
characteristic of a software bus. When Web services that comply with a set of
specifications, such as the WS-I basic profile 1.1, are simply used together in a
solution without any additional form of mediation between the connections, the
services can be thought of as forming a type of service bus. We will use this type
of bus in the design for the scenarios in this book. But it is worth repeating the
limitations of this simple kind of service bus

1. The configuration of the bus can’t easily changed. Depending on how clients
and servers are built it is usually not possible to move or change a service
without impacting its clients

2. The bus has no defined topology; it is built from point-to-point connections
mapped onto addresses in the underlying network. There is no bus level
network model.

 Chapter 4. Web services primer 65

In the Patterns for e-business (P4eb) method a new set of SOA patterns are
defined using the concept of an ESB. In Chapter 6, “Interoperability patterns” on
page 93 we have taken the liberty of introducing a simpler type of service bus:
the “<WS-I basic profile 1.1 compliant>” service bus.

The value of the concept is that it simplifies the use of the Patterns for e-business
(P4eb) to design solutions like the business scenarios used in this book. Rather
than show each service requestor and service provider linked in a pairwise
connection, all the service requesters and providers are connected to a common
bus.

From an architectural perspective, the value in showing Web service requesters
and providers in a pairwise relationship is to identify that some specific
adaptation or mediation needs to be associated with each particular connection.
In the case of a WS-I Basic Profile 1.1 compliant service bus the only piece of
information that is specific to each connection is the address of the provider, and
that we have chosen to characterize as part of the definition of this simple bus.

4.5 Summary
This concludes our review of the basic technology that comprise Web services,
and the discussion of what Web services are and how they relate to
Service-Oriented Architecture and the Enterprise Service Bus.

In the next chapter of the book, we will introduce the scenario we will be using to
demonstrate using Web services to integrate the Microsoft .Net and WebSphere
software environments.

66 WebSphere and .Net Interoperability Using Web Services

Part 2 Web services
interoperability

In this part of the redbook, we start by describing the business scenario and the
problem that is going to be solved using Web services. Next, we use e-business
patterns to analyze the problem from an IT perspective and propose a solution
architecture. Then, continuing to use the e-business patterns method, we map
the solution to a Web services implementation.

The remaining chapters in this part of the book survey the current and future
Web service specifications, the work of the WS-I (Web services interoperability)
organization, and Web service implementations in WebSphere and Microsoft
.Net.

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 67

68 WebSphere and .Net Interoperability Using Web Services

Chapter 5. Business scenarios

In this chapter, we introduce two scenarios. These scenarios are representative
of actual customers’ business requirements in terms of interoperability between
WebSphere and Microsoft .Net platforms and the adoption of a Service-Oriented
Architecture (SOA) based on Web services technology.

Each business scenario is fully examined and the high-level design approach to
the target solution is achieved through the following stages:

� Business goals identification and requirements definition
� Current IT infrastructures assessment and technical constraints identification
� Solution context details
� Proposed IT infrastructure

5

© Copyright IBM Corp. 2005. All rights reserved. 69

5.1 Business scenarios overview
Business scenarios describe how customers use IT solutions to accomplish their
business goals. They are based on a thorough knowledge of customers'
business goals and are refined to help the consultant, solution and application
architect during requirements validation phase. The identification of use cases
facilitates communication among customers, analysts, developers and testers.
Scenarios clarify an evolving agreement between the sponsors of a solution and
the development teams.

As a reference point for scenario selection, we use those provided by the IBM
System House Business Scenarios team. This team works with customers and
IBM customer-facing teams (marketing, industry solutions, solution builders) to
identify solutions that many customers need and prioritizes the solutions in terms
of their importance to the development and marketing teams in IBM. The
Business Scenarios team then takes on the role of the customer in designing
solutions for the scenarios using a mixture of products from IBM and other
vendors. The objective is to create a process to assist IBM development teams in
improving the design of their products working together as an integrated software
platform. By designing solutions for the business scenarios, the development
teams identify integration gaps that need to be addressed to make the
experience of implementing these solutions easier and to make the solution
more effective in helping customers to achieve their business needs.

Each System House Business Scenario includes a description of the business
context, the business requirements, the interactions between the users of a
system and an understanding of business events, objects and transactions within
that environment. The scenarios are validated by IBM customers in the business
sector to ensure that they represent areas of active investment, that they identify
the business problems they are tackling, and that the solution architectures are
representative of what IBM’s customers are building.

According to the main purpose of this book, we selected and customized two
scenarios requiring integration over different IT infrastructures:

� Mergers and Acquisitions: this scenario represents a merger between two
insurance companies. One is a typical property and casualty insurance
company providing insurance through agents using CICS and WebSphere
MQSeries products; the other is an example of a dot.com insurance company
working entirely through the Web using a Microsoft .Net platform. We look at
the integration of the claims process across the merged companies.

� External Claims Assessor Management: this scenario extends the first
scenario to automate a common outsourcing operation to external claims
assessors.

70 WebSphere and .Net Interoperability Using Web Services

5.2 Mergers and Acquisitions
This scenario is related to the merger of two companies that are representative
of many companies in the insurance industry1. A short company profile is
provided in order to introduce the reader to the business goals driving the
required solution.

Lord General Insurance (LGI), a property and casualty insurance company, is a
large enterprise with more than five million policy holders, looking to boost its
auto-insurance business and requiring a quick entry to the e-business direct
insurance market. LGI has a large IT infrastructure based on S/390® and CICS.

LGI has acquired DirectCarInsure.com (DCI), a modern dot.com auto insurance
company that sells insurance through the Internet and has fewer than one million
policy holders. It has an e-business focused infrastructure based on Microsoft
.Net.

5.2.1 Business goals
The major business goal for a merger or acquisition in financial services
companies is the profitability and core business value improvement as well as a
market share increase; this target can be achieved by providing value-added
customer services, which means:

� Adding new channels to market for the merged company’s products

� Broadening the products that can be offered down existing channels

� Reducing services costs

� Providing customers with a better service experience by exploiting new
channels and more responsive internal processes

Different segments within the financial services sector have different goals with
respect to integrating merged and acquired companies within their business that
affect the IT solutions they adopt.

In the banking field, it is often the case that acquired companies are fully
absorbed into the merged company. This means that elimination of duplicate IT
capabilities is a common cost reduction goal. Typically, this implies selecting
common IT suppliers and amalgamating IT departments and probably reductions
in staffing.

In the insurance segment, if the opportunity arises to sell the acquisition to return
value to the shareholders, or to finance another acquisition, it is often taken. The
impact on IT policies during a merger is that there is less emphasis on merging

1 These particular companies were invented for this scenario.

 Chapter 5. Business scenarios 71

IT infrastructures (indeed, frequently the reverse to make disvestment easier)
and more emphasis on producing speedy returns and not disrupting existing IT
organizations.

Dealing with this specific scenario, our target is to achieve the following LGI
goals:

� Improve access to the market, extending products range and making them
available to all customers

� Provide a direct customer channel

� Satisfy service level agreements as defined in customer requirements, for
example, performance and security guidelines

� Improve the company's profitability by reducing overall administration costs,
with an immediate focus on claims administration for existing products

� Improve the ability to monitor and manage business processes across both
LGI and DirectCarInsure.com

� Gain a complete view of the total business process and related information

� Achieve all of the previous goals as fast as possible in incremental steps

5.2.2 Solution context
The solution context related to the merger scenario involves all LGI and
DirectCarInsure.com business processes and systems which are, in part, out of
the scope of our more limited aims for this redbook. In this section, we describe
all the areas impacted by the new solution and detail which is the one we want to
take as an example for the achievement of an interoperable final working
solution.

Figure 5-1 on page 73 considers all systems currently involved in the LGI and
DirectCarInsure.com business process; the main areas which will be impacted by
the merging solution are the policy administration and claims handling.

72 WebSphere and .Net Interoperability Using Web Services

Figure 5-1 Mergers and acquisitions scenario business context

Regarding the policy administration area, the convergence of the two companies
can be achieved by means of a single joint Web application which must be able
to access both back-end systems and return the best insurance quote.

The claims system, instead, refers to the combination of business processes and
IT systems tasks executed to handle a claim raised by a client. As part of the
merger of LGI and DCI, a consolidation of the existing individual claims systems
is essential. During the evaluation of the two claims systems, the following two
requirements were highlighted to merge the systems: improve claims
administration, and reduce costs.

� Re-engineer the business by combining the two claims departments and
creating a single claims process

� Improve the claims process management

 Chapter 5. Business scenarios 73

Both the policy and claim system implementation are impacted by interoperability
issues; in the policy area, the key requirement is maintaining responsiveness
and availability when dealing with high quote volumes. The solution requires
broadcasting quotes and aggregating responses within a target response time so
as not to lose Web-based clients. The claims area is focused on managing a
complex workflow automation in a heterogeneous systems environment. The
goals are to reduce costs and improve customer responsiveness by improving
business processes.

We decided to examine the claims system for a number of reasons:

1. Availability and performance of the policy system is more business-critical
than the claims system because the policy system is winning new business. It
is harder to win new business than it is to retain existing customers.

If possible, it is beneficial to gain experience with a new technology, such as
Web services, before exposing it to the harsh environment of the Internet in
an application that is going to expose any shortcomings directly to the
insurance companies’ customers. This reflects the observed take-up of Web
services in the industry today. Most Web service applications are within the
intranet.

2. The second scenario (External Claims Assessor Management) is an
extension of the claims scenario, in which we investigate secure interoperable
Web services between LGI/DCI and its outsourced claims assessors.

3. We believe the decisions regarding the architecture, design and development
tasks needed to build interoperable Web services can be reused in the policy
administration area

5.2.3 Current IT infrastructure
Before proceeding with the new automated claim assessment solution design,
we need to fully understand existing technologies and staff roles that form the
claims process.

In this section we describe the architecture of the environment that supports the
existing claims system. We also describe the interactions, which are divided
between users and components, and between the components and any other
remaining components. Both LGI and DCI current IT infrastructures are shown in
Figure 5-2 on page 75.

The claims system for DCI in is based around a three-tiered net-centric
architecture that lets clients register claims online and receive updates on the
status of their claims through e-mail or traditional mail. The IT infrastructure that
supports the claims processing consists of a cluster of application servers that
handle both the transformation and collation of data provided by the client, and

74 WebSphere and .Net Interoperability Using Web Services

sends this data in the form of requests to an off-the-shelf claims application in the
back-end system. Replies from the back-end applications are sent to the
application servers, where they are presented dynamically to the client as Web
pages. Other processing is performed manually or in the back-end system.

LGI has a message based hub-and-spoke infrastructure with all client
applications sending requests to a central broker that handles the transformation
and routing to the back-end applications or workflow systems. All replies from the
applications are sent to the message hub for transformation and routing to the
client application. A customer registers a claim by contacting a call center or their
insurance agent where the claim agent collects the required information and
uses EDI or a dedicated client to input the information to LGI. As with DCI, all the
claims processing in LGI is done manually, or through dedicated client
applications accessible by the claims handler and claims supervisor. LGI
provides channels for business partners into the message broker.

Figure 5-2 LGI and DCI current IT infrastructure

From a workflow point of view, the existing claims system for LGI and DCI can be
divided into four different business processes:

Register claim
In the case of LGI the customer contacts the call center or their insurance agent,
who records their accident details. The call center agent uses a dedicated client
application to enter the claims information directly into the claims database and
completes the registration process by giving the client a claim number for
reference.

 Chapter 5. Business scenarios 75

The insurance agent completes the registration forms using an EDI package
which then passes all the claims onto LGI to insert into the claims database and
receives a claim number back to handle subsequent queries from the customer.

In the case of DCI, the client logs on to the DCI Web site and is able to register
claims online. The claim reference is presented to the client online once the
required processing is completed.

Validate claim
The raised claim is authenticated to confirm that the client's policy is valid and
not expired, that the driver is insured and paid up on the policy, and that the
details provided are accurate.

Investigate claim
The claim is investigated by requesting and acquiring the police and medical
reports from the authorities. At this stage, the assessment company is contacted
to perform an assessment of the damage and to make recommendations on how
to proceed.

Judge claim
Based on all the information provided, the claims handler or claims supervisor
makes a decision on whether the car is to be fixed or replaced, or the claim
rejected.

In the following sections we will focus only on claim registration and validation
processes because they are considered to provide a full subset of significant
interoperability alternatives.

5.2.4 Technical constraints
The following policy directives have been set for the merger solution being
implemented by LGI; each of them is also detailed with the consequent impacts
on the solution building process and design.

� Total Cost reduction

– No spending for change on current IT infrastructure
– Reuse of the current investments and applications

� Use open standards-based technologies (J2EE, BPEL, UML2, Web services)

� Look for opportunities to build common infrastructures that can be used for
multiple solutions

� Short delivery term: solution must be totally implemented within one year

� Merge disparate IT system

76 WebSphere and .Net Interoperability Using Web Services

– Build a connectivity infrastructure for the application and integration layer
as well as for the transport and network layer on top of the existing IT
infrastructure.

– Difficulty in monitoring and managing different distributed solution
components

– Possible delays in problem determination due to cross product, solution or
organization boundaries

� Merge disparate long running processes

– Monitoring and rationalization of single process steps
– Reducing overlapping and optimizing interactions

5.2.5 Solution level design
The business vision, as shown in Figure 5-3, is to create a
one-company-for-all-channels view that hides the customer from the complexity
of the LGI and DCI back-end application. The main requirement of this merged
claims system is a common front end for the merged company.

Figure 5-3 Business vision of merged companies process

Workflow automation
The improvements and implementation required to create the merged claims
system are described below:

Register claim
The register claim process is automated by creating an online common Web
interface for the joint customer base. Clients are able to raise claims online and

 Chapter 5. Business scenarios 77

get their claim references. The common front end authenticates the users
against the federated secured user directory, and provides a customized user
interface for the internal users.

Validate claim
The validation of claims is automated by developing business process flows that
represent the validation process and deploying them in a workflow engine.

Investigate claim
The investigation process is automated with integrated access to the
assessment companies and other business partners. Using workflow
technologies, the claims handler and supervisors have access to the different
claims and are able to make decisions or correct errors where required.

Judge claim
This process is automated and linked to the other processes and services for
access to any data that might be needed to help make a judgment.

5.2.6 Technical approach
In this section we describe technical directions needed to correctly address the
solution’s high level architecture in an interoperable environment. Solution
design and interoperability patterns will be detailed on the following chapter.

As part of merging the claims systems, a consolidation of the IT infrastructure to
leverage the best of both systems is crucial, and where possible, reuse of
technologies and skills are advised. One of the biggest challenges in the merger
is that the DCI and LGI back-end systems must be kept separate. Merging the
security policies of the two companies also influences some of the changes to be
made to the business processes.

The technical solution focuses on the achievement of a new application
integration layer being able to provide a new integrated business process which
includes all existing infrastructures of the two companies.

Enterprise application integration (EAI)
The required solution must be able to integrate the two merged insurance
companies without replacing actual back-end systems. We need to make use of
their existing functions. A typical Enterprise Application Integration approach to
the solution is needed. We need to try to interface existing functions to a single
application infrastructure layer so the users of the back-end systems are
unaware that the services they are using different applications hosted on
different systems.

78 WebSphere and .Net Interoperability Using Web Services

Business process management (BPM)
The requirements we are focusing on require a solution based on a business
process management engine. This engine could be both WebSphere
WebSphere MQ Workflow and WebSphere Business Integration Server
Foundation.

The choice of one specific engine is not strictly required. Although both products
have the similar functionality, each has its own strengths. For example, if part of
a business process interacts frequently with Java applications, Enterprise
JavaBeans (EJBs) or Web services, then we can model this part as a Process
Choreographer subprocess in an WebSphere MQ Workflow business process.
Process choreographer has the advantage of

� Better build-time support in WebSphere Studio Application Developer
Integration Edition for modeling EJB and Web service interactions

� Transactional support for EJB invocations
� Transactional support for Web-service invocations using EJB or JMS

bindings.
� Being able to model a sequence of transactions as a non-interruptible

processes to reduce the number of interactions

If we model Process Choreographer processes as sub-processes in an
WebSphere MQ Workflow master process we can monitor the entire flow using
WebSphere MQ Workflow monitoring tools. The Process Choreographer
subprocesses are treated as activities in the WebSphere MQ Workflow.

Where we need to reuse our existing WebSphere MQ Workflow processes in
Process Choreographer, we can model them as subprocesses inside new
Process Choreographer processes, but continue to execute them in WebSphere
MQ Workflow. That way, we can avoid migrating WebSphere MQ Workflow
processes to the Process Choreographer.

In the solution proposed for the current scenario, each Microsoft .Net Web
service can be considered a task of the Process Choreographer process. The
process acts as a Web service client and the task is implemented by the service
provider external to the system context.

The interoperability requirement is that Process Choreographer is able to import
a Microsoft .Net produced WSDL file and see the service as one of the available
tasks. The interoperability requirement can be considered similar for any
Microsoft .Net Web service which is consumed in a WebSphere environment.

Service-Oriented Architecture (SOA)
What the proposed solution needs to achieve is that both existing back-end
environments are able to provide their existing applications as Web services and,

 Chapter 5. Business scenarios 79

if possible, it would be useful if these services were invokable in the same way
regardless of the underlying technology that is going to provide them. Our main
purpose matches the goals of Service-Oriented Architecture (SOA).

SOA is an emerging architecture which is trying to realize the integration of
heterogeneous systems as part of an on demand architecture. The architecture
proposes a model in which the whole system is made of disparate nodes, each of
them providing its own services to the other ones. Services provided by each
single node are required to be loosely coupled, locationally transparent and
protocol independent; the accomplishment of these requirements allow the
services to be consumed by the other nodes in a disparate IT infrastructure.

Web services (WS)
Web services technology is to be used for this solution as the integration layer. In
our scenario, Web services are the best choice for implementing a
Service-Oriented Architecture.

This choice is driven by two factors:

� Web services are a practical implementation of an SOA

� Web service technology is strongly focused on achieving interoperability,
particularly between Microsoft and IBM environments.

– Web services are developed through open specification processes
– IBM, Microsoft and other vendors are running joint workshops to make

sure that the resulting specifications are practical and interoperable
– The WS-I organization is running a specification and testing process to

assist vendors achieve interoperability

Service-Oriented Architecture stack layers and Web services architecture are
detailed in the following chapters.

Web services security (WS-Security)
Our plan is to start with a simple register claim use case that gives reader an
understanding of interoperability problems. Then our plan is to introduce security
by investigating use cases involving external claims assessors.

For this reason, we suppose that the claims use case does not require security
features. It is justified by the business and technical context: after the merger,
both LGI and DCI back-end system can be considered part of the same
company, sharing the same intranet. Disclosure of information is allowed without
any restriction inside the intranet itself.

80 WebSphere and .Net Interoperability Using Web Services

The second scenario detailed later in this chapter has the purpose of adding
more complicated service requirements to the solution and requires the adoption
of WS-Security.

Interoperability and WS-I
Even though Web services stack elements are based on standards
specifications, some of these specifications have not been finalized. Others,
even if already published in a final version, have unfortunately been implemented
in different ways. For that reason, we need to focus on any differences in the
WebSphere and Microsoft .Net implementations of current Web services
specifications.

In the following chapters we give a detailed description of the interoperability
issues between the two platforms providing some recommendations about the
correct application of design patterns and the implementation of services.

5.2.7 Target IT infrastructure
In this section we describe the high-level architecture of the environment that is
proposed to support the new merged claims system. We also describe the
interactions between users and components.

The solution is built assuming the complete reuse of the existing legacy
infrastructure and claims applications from LGI and DCI. The existing DCI Web
layer is replaced with a brand new Web layer not reusing the Web interface from
DCI. This choice is driven by the following reasons:

� Business and strategic reasons:

– LGI strategy in acquiring DCI was much more related to the acquisition of
the market share than the acquisition of the Microsoft .Net technology.

– The merger of the two companies required a change of the look and feel of
the associated Web site.

� Technical reasons:

– Current IT hardware infrastructure is not sized for the new expected
workload: DCI has less than one million policies while LGI has more than
five million

– More Web functions are in plan to be developed

– The existing controller on the server side needs to be changed in order to
communicate with both DCI and LGI, and needs to follow new business
rules.

The approach we decided to follow for building the solution is to focus on
providing an interface between the presentation layer and the two existing back

 Chapter 5. Business scenarios 81

ends. For the purposes of the redbook, we won’t actually build the presentation
layer and its associated Web pages.

The interface between the presentation layer and the back-end systems is
realized via Web services using the same component to invoke both service
providers. Since one service provider is based on WebSphere and the other on
Microsoft .Net platforms, being able to achieve this goal means we have
successfully addressed the development of an interoperable solution between
WebSphere and Microsoft .Net.

Architecture overview diagram
Figure 5-4 shows the proposed architecture overview diagram. The figure does
not aim to address hardware platforms or software configuration which is the
purpose of the following chapter. We want to focus on:

� Components we intend to reuse
� Components we intent to not reuse
� New required components
� The proposed interaction between users and components

Figure 5-4 Merged claim process architecture overview diagram

82 WebSphere and .Net Interoperability Using Web Services

As shown in the figure the solution architecture is based on the following
decisions:

� Creation of a new Web layer composed by a presentation logic layer, a
business process manager layer and a Web services client layer

� Creation of two Web services provider layers on both back-end systems
exposing business logic services

� Complete reuse of both back-end components such as business logic, data
access and connectors

� Removal of the DCI Web layer (presentation and controller)

5.3 External claims assessor management2
This scenario is an extension of the previous one providing further
interoperability requirements and use cases. It supposes that LGI has recently
completed the claims and policy processes related to the previous scenario;
however, LGI still feel their view of the new processes is fragmented and there
are still parts of the flow which are outside of their control and cannot be
monitored from one single point.

5.3.1 Business goals
The business goal of this scenario to improve company profitability by optimizing
the cost and duration of the claim process workflow. In analyzing the system LGI
has identified a particular problem in the assessment activity of the Claims
Process. Costly delays have been identified in the selection and follow-up of
external claims assessors. LGI would like to automate the selection of claims
assessors and get more visibility of their progress and efficiency.

The following business goals were identified in the current scenario:

� Monitor and manage the entire claims process including activities performed
by external claims assessors

� Reduce administration costs by minimizing manual activities involved in
managing claims assessment

� Increase customer satisfaction by reducing administrative delays on claims
queries

� Identify and resolve business processing delays quickly

2 As mentioned in “Limitations” on page 4 we intend to use the Claims Assessor scenario to demonstrate secure
interoperable Web services when the WS-I security profile 1.1 is approved and implemented by WebSphere and Microsoft
.Net. which we expect to be during 2005

 Chapter 5. Business scenarios 83

5.3.2 Solution context
We assume that the merged claims system in the first scenario already exists
and is fully operational. We now suppose that LGI wants to reduce the costs of
assessing claims by automating the process of getting loss adjustments from
external assessors for both LGI and DCI.

LGI cannot change the implementation of its assessor automation system
without disrupting its operations and existing assessors. To encourage seamless
integration, LGI provides its assessors with details of a number of alternative
interfaces to the assessor automation system to which the assessors must
conform, including a browser interface for assessors who choose not to
automate their own processes. LGI is not concerned with how the external
assessors implement their back-end code as long as they conform to the given
interfaces to LGI’s own automated assessor system.

The external claims assessor company we are going to consider has strong
Microsoft skills and wants to use a Microsoft .Net system-based implementation
to interact with the existing LGI infrastructure.

The required solution must automate all the “happy path” tasks involving LGI and
external assessors. These tasks have been identified and detailed in term of
specific single requirements:

� List retrieval of candidate based on clients’ territory and car brand

� Check of assessors availability among all candidate assessors

� Assessor selection starting from candidate availability list based on business
rules reflecting the cost, reliability and quality of the assessments made by
the assessor

� Request of assessment to the selected assessor

� Receiving of assessment report

In the following sections we give an architecture overview of the full proposed
automated process focusing only on those tasks regarding communication about
LGI and external assessors because these are the one affected by
interoperability requirements.

5.3.3 Current IT infrastructure
As we assume that this scenario is an extension of the previous one, the starting
IT infrastructure for this scenario corresponds to the target IT infrastructure of the
first scenario. As shown in Figure 5-5 on page 85, the current claims process is a
single common process able to handle the administration of auto claims both for

84 WebSphere and .Net Interoperability Using Web Services

LGI and DCI, the two merged companies. External assessors are only managed
by means of manual activities that is using phone, fax or e-mail.

Figure 5-5 Current IT infrastructure of the external claims assessor management system

5.3.4 Technical constraints
The following list summarize technical constraint established by LGI:

� Minimize impact of new solution on existing applications and processes

– Maintain existing channels

– Reuse of existing applications including BPM system

– New applications must use the corporate LDAP directory for staffing roles
and definitions

� Demonstrate development productivity improvements

� Use open standards

5.3.5 Solution level design
This technical solution addresses the extension of the current claims business
process to include a full automated workflow management system to handle auto
claim assessments by external independent assessors.

The Assessor System will be responsible for identifying and selecting an
assessor based on availability and a match to the needs of the claimants and
their damaged vehicles. The system will:

 Chapter 5. Business scenarios 85

� Manage the communications between the Claims Assessor(s) and the
company both through the initial selection process and the stages of the
actual assessment using an external gateway.

� Hold details of the available claims assessors and their communication
details

� Link to the main claims process and allow authorized claims personnel to
monitor the progress of a claim assessment

� Hold details of the state of a claim assessment through its life cycle

� Allow event points to be established which can feed event information
(including state) to the main claims process for display on a Business
Monitor/Dashboard

� Provide a rules engine which can be updated by an authorized Claims
Administrator with business rules which determine the type of Claims
Assessor for a particular claim

Workflow automation
The workflow part of this scenario is tightly connected to the previous scenario
business process because we are now exploiting a specific activity in the
investigation task, when an external service provider is delegated to perform the
assessment.

Figure 5-6 on page 87 shows all activities composing the required workflow. We
give a short description of each activities focusing only those regarding the
interactions with External Claim Assessors.

86 WebSphere and .Net Interoperability Using Web Services

Figure 5-6 External claims assessor management workflow automation

Activity 1 - Identify assessors
This activity will identify suitable assessors from the existing assessor
management system using the claimants vehicle type and postal code exacted
from the claim record identified by the claim id. A list of assessors matching the
criteria will be returned back to the assessor process manager. If no match is
found then an exception message will be generated and displayed on the claims
handler’s work-list.

Activity 2 - Request Availability
Send an assessment request with the list of assessors to the distribution system.
The distribution system will handle all replies, and consolidate the list of
assessors returned. The assessors are given a date and time to reply. This time
will trigger the next activity.

Activity 3 - Select assessor
If no assessors have been returned then trigger an exception message for
viewing and action by the claims handler. If more than one assessor is selected
then apply the business rules to identify the most suitable assessor. The criteria

 Chapter 5. Business scenarios 87

for selection are based on response time, priority of assessment, ranking of
assessor and availability to perform assessment.

Activity 4 - Request assessment
The system send the full claim details to the selected external assessor.

Activity 5 - Receive Assessment report
When the assessment report is returned, store the report reference in the claims
document management system, and return control to the main claims system
with a response that the assessor activity is complete. If the report is not received
within the date and time agreed, an exception should be generated and again
displayed on the claim handler’s work-list.

At any point in the process, the claims handler should be able to select the claim
from their work-list and display the status of the assessment.

5.3.6 Technical approach
The technical approach to the external claims assessor scenario is carried out
supposing that all issues detailed in the previous scenario, such as BPM, EAI,
SOA, ESB and Web services remain still valid. The current scenario, in fact,
requires the adoption of additional technologies and components in order to
meet the integration requirements. These technologies have to address:

� Quality of service, especially in terms of security

� Web services publishing over the Internet and being used by disparate
external consumers

Web service security
This scenario can be considered the most suitable to address interoperability
issues related to Web services security for the following reasons:

� The scenario uses Web service in the insecure Internet environment

� We are exchanging contractual information and it is important that all parties
can sign up to the exchanged information being legally valid. This will involve
us in issues of data integrity and non-repudiation of delivery of material.

A deep analysis of the messages supposed to be exchanged between LGI and
external assessor, reveals that not all of them need the same kinds of security.
Detailed functional and business requirements analysis identifies the following
security requirements for the different interactions involved in dealing with the
external claims assessors:

� Client and server authentication based security for the first message,
which is the availability request. The assessors need to trust who is

88 WebSphere and .Net Interoperability Using Web Services

requesting their availability while LGI needs to trust who is claiming
availability. Encryption of exchanged information is not needed because their
content is of no relevance.

� Server authentication based security and digital signature for the second
message, which is the assessment acceptance. Server authentication is
required, because we suppose that, from a client side point of view, it is
needed to provide the assessors with an authenticated assessment request
and, from a server side point of view, it is required that the assessment
acceptance is signed because the message must be delivered as without
modification.

� Encryption based security and digital signature for the third message,
which is the assessment report; cryptography is required because the content
of the message is confidential and must be protected during the network route
from the assessor IT system to the LGI IT system, while digital signature is
required because the assessment report has the validity of an official
document.

Web services dynamic invocation and UDDI
When Web services are consumed via the Internet by multiple clients, as in the
External Claim Assessors scenario, it is recommended to publish the Web
service in an UDDI registry. UDDI is equivalent to the yellow pages of a
telephone systems providing, for a specific service, both the location and the
interface specification.

UDDI registry provides several advantages to both service producer and
consumers:

� The location and interface of a service can be updated without the need to
contact all known consumers to send them new specifications.

� Consumers can access to the service using dynamic invocation at running
time which is a valid alternative to the static invocation made at development
time. Dynamic invocation has the advantage of not requiring a client update if
the service interface or location is has changed in a simple way, such as a
change to the location of the service.

Web Services Gateway
The adoption of a Web Services Gateway must be considered mandatory in the
selected scenario; this component is in fact the most suitable in an
inter-enterprise environment providing a number of advantages:

� Central access point for all services crossing the enterprise boundary

The gateway provides a single, well-known point to for internal service
consumers to access external service providers, and vice versa

 Chapter 5. Business scenarios 89

� De-coupling the deployment of Web services from clients

The gateway isolates any changes in the deployment of services from
consumers of the services. The location of services also becomes
transparent to clients of the service.

� Central security control point

Access control can be applied to Web services so only authorized consumers
are allowed to access services. Typically the gateway is deployed in the DMZ
with only the necessary ports open to the Internet to protect the servers in the
intranet that are hosting the Web services from attack.

� Protocol conversion between Web service requesters and providers

Access to the services of applications that use protocols other then HTTP is
planned for the near future. Therefore, access to the Web services has to be
open for different protocols.

Enterprise Service Bus
The Enterprise Service Bus is an emerging model in the evolution of
Service-Oriented Architecture. Its implementation means the joining of:

� A Service-Oriented Architecture
� A Message-driven architecture
� An Event-driven Architecture

In the full claims scenario, an ESB could provide easier administration over the
deployment and management of services inside LGI and DCI, and mediating
between different Web service interfaces for applications implemented with
different interfaces in LGI and DCI. In the claims assessor scenario, the Web
services Gateway provides a piece of ESB capability by de-coupling the
deployment of a service from its external endpoint advertised to claims
assessors.

Interoperability
Among all technologies required for the implementation of the proposed target
solution, the following list continues the ones investigated in following of this
redbook with the purpose to achieve to an interoperable solution:

� Web services security
� UDDI
� Web Services Gateway

5.3.7 Target IT infrastructure
The proposed solution IT infrastructure is based on the existing merged LGI/DCI
solution. The existing middleware components are reused to define a new

90 WebSphere and .Net Interoperability Using Web Services

business process for the workflow automation of the External Claim Assessors
management. The major extension in this scenario is the communication layer
between the LGI IT system and the external assessors IT system is via Web
services.

The extension has:

� Different quality of service requirements

� The need to communicate with more than one unknown remote system

� Use of Internet channel which is intrinsically insecure, devoid of guaranties of
message delivery and devoid of monitoring systems.

The achievement of the interoperability between the LGI WebSphere based IT
infrastructure and an external assessors Microsoft .Net IT system is, in this case,
more complicate to address; the reason is that security standards
implementation is required and this increases the risk of failure in case of
consistent differences among different implementations.

Architecture overview diagram
The architecture overview diagram of the proposed solution is shown in
Figure 5-7 on page 92. As explained for the merger solution architecture,
hardware platforms or software configuration are detailed in the following
chapter. The figure shows all required components, the most part of them
already existing.

The only one new required component is the Web Services Gateway which is
required as de-coupling platform from the internal LGI infrastructure and the
external assessors systems available through the Internet channel.

 Chapter 5. Business scenarios 91

Figure 5-7 External claims assessor management system architecture overview diagram

5.4 Summary
This chapter should be used by consultant and solution architects who need to
address customer proposals for solutions requiring system integration between a
WebSphere-based application architecture and a Microsoft .Net based
application environment.

Two different scenarios have been described in terms of solution architecture;
the approach was to start from the analysis of business goals, current technical
environment and technical constraint, then to pass through the analysis of
available technologies, and finish with the proposed architecture overview
diagram.

The first scenario is simpler in terms of the technologies used, the second one is
more complex because it requires security, dynamic publishing and a gateway.
This difference is useful for readers who start inspecting basic interoperability
issues, thus learning to understand the most complex ones.

LGI infrastructure

92 WebSphere and .Net Interoperability Using Web Services

Chapter 6. Interoperability patterns

In this chapter, we discuss how to refine the IBM Patterns for e-business to use
Web services as an implementation of Service-Oriented Architecture (SOA).

The chapter includes the following topics:

� A brief introduction to the Patterns for e-business layered asset model

� Patterns for Service-Oriented Architecture and Web services

� Discussion of patterns and Web services, including the impact on patterns

� Identification, selection and application of patterns for a given business
scenario with interoperability in consideration

� Any variation in standard implementation due to interoperability

� Discussion about emerging patterns for Web services to further improve
interoperability

6

© Copyright IBM Corp. 2005. All rights reserved. 93

6.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in such a way that each level
of detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best practices guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relationships to each other are shown in Figure 6-1 on
page 95.

94 WebSphere and .Net Interoperability Using Web Services

Figure 6-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns for e-business Web site provides an easy way of navigating
through the layered patterns assets to determine the most appropriate assets for
a particular engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

6.2 SOA approach and Patterns for e-business
With a Service-Oriented Architecture approach, the Patterns for e-business
method uses service integration bus Runtime patterns to connect to application
components. This enables a business to be agile and respond quickly and
efficiently to changes in the market and its customers’ requirements, as well as to
stay competitive.

When used with the SOA approach, the focus is on creating and integrating
loosely coupled services to build the solutions required by a business. The
service-oriented paradigm leverages the notion of services as discrete building
blocks of business functionality, which are composed together to satisfy business
requirements. Focusing on building services for reuse from existing applications

 Chapter 6. Interoperability patterns 95

http://www.ibm.com/developerWorks/patterns/

can be a more effective way to build solutions than building discrete
point-to-point connections between applications.

The existing Business, Integration, Application and Runtime patterns are
consistent with the SOA approach. The business problem will drive the
identification of the appropriate patterns involved in a potential solution. Runtime
patterns that involve two or more middleware nodes connecting logical
application tiers will have additional communication options (and hence product
mappings) between tiers with the use of services in a SOA.

In December 2004, the Patterns for e-business Web site, found at
http://www-106.ibm.com/developerworks/patterns/web-soa.htmlwas revised
to accommodate SOA. The SOA concept simplifies designing runtime
architectures. Using the concept of a service bus, multiple point-to-point
connections between applications realized through connectors are replaced by
single connections between applications realized as services. This can greatly
simplify mapping Application patterns to the runtime architecture of the solution.

Service buses are not a “one size fits all” solution. In 4.4, “Web services and the
Enterprise Service Bus” on page 58, we summarize the concept of an ESB. The
discussion draws attention to how the qualities of service offered by Web
services differ from those offered by an ESB. From a Patterns for e-business
perspective, this notion of choosing between different types of service bus is
modeled as defining the “X-Type” of service bus (see Figure 6-7 on page 102).

One obvious candidate for an “X-type” service bus is a WS-I compliant Web
services bus. We have used this kind of service bus to implement this scenario.

6.2.1 Business::Self-Service pattern
The Business::Self-Service pattern captures the direct interactions between
users and an enterprise, which range from simple information access to complex
updates involving core enterprise systems data. This fits in nicely with a
Service-Oriented Architecture, which consists of service consumer and service
providers. Users such as customers, business partners, stockholders and
employees are service consumers, while the enterprise is the service provider.

The Self-Service::Directly Integrated Single Channel Application pattern, for
example, provides a user access channel to presentation logic running in the
presentation tier. The presentation tier can request or consume services
provided on the application tier. The application tier, in turn, can consume
services provided on the back-end or enterprise tier, as shown in Figure 6-2 on
page 97. The multiple application boxes on the right represent the back-end
applications that contain the business data. The type of communication is
specified as synchronous (one request/one response, then next

96 WebSphere and .Net Interoperability Using Web Services

http://www-106.ibm.com/developerworks/patterns/web-soa.html

request-response) or asynchronous (multiple requests and responses
intermixed).

Figure 6-2 Self Service::DIrectly Integrated Single Channel application pattern

The Self-Service::Decomposition application pattern handles a slightly more
complicated situation, where data resides in two or more separate and dissimilar
databases. The user request would actually require data from multiple, disparate
back-end systems. The request is broken down into multiple requests
(decomposing the request) which are sent to the different back-end databases,
then the information sent back from the requests is gathered and put into the
form of a response (recompose), as shown in Figure 6-3.

Figure 6-3 Self Service::Decomposition application pattern

 Chapter 6. Interoperability patterns 97

6.2.2 Extended Enterprise business pattern
The Extended Enterprise business pattern, which is also known as the
Business-to-Business pattern or B2B pattern, addresses the interactions and
collaborations between business processes in separate enterprises. This pattern
can be observed in solutions that implement programmatic interfaces to connect
inter-enterprise applications. In other words, it does not cover applications that
are directly invoked using a user interface by business partners across
organizational boundaries.

The Extended Enterprise::Exposed Direct Connection pattern is the simplest
pattern that allows a pair of applications to communicate with each other
between organizational zones.

Figure 6-4 Extended Enterprise::Exposed Direct connection Application pattern

The different zones are most commonly thought of as being within different
enterprises, as in Figure 6-4, or between the Internet and intranet. But the zones
could be between different departments or companies in the same enterprise
which have a degree of autonomous management of IT services in the different
entities.

This pattern is an obvious candidate for the External Claims Assessor extension
to the scenario. For the register claims scenario, the external interaction is via a
Web browser interface rather with a partner application program and the
Self-Service::Direct connection patterns are a better choice.

6.2.3 Discussion of patterns and Web services
It is no surprise that the introduction of a Service-Oriented Architecture has no
effect on the Business and Integration pattern layer, except to suggest that the
scale of horizontal integration could be more ambitious. SOA is more likely to

98 WebSphere and .Net Interoperability Using Web Services

affect the lower level Runtime patterns, and will provide a model to allow
enterprises to exploit Web services to implement Business and Integration
patterns.

Business patterns
Web services technology can be used to implement all four types of Business
patterns.

� Self-Service pattern: organizations can publish core business functions as
Web services that can be consumed by customers and business partners.

� Information Aggregation pattern: content aggregates can access Web
services provided by content providers. They can also use Web services to
make content available to consumers.

� Collaboration pattern: individuals, programs and organizations can
collaborate with one another by accessing standardized Web services
deployed at their business partners’ Web sites.

� Extended Enterprise pattern: Web services technologies can be used to
simplify the process of integrating systems and business processes across
the value chain.

Integration patterns
Web services technologies have a major impact on how Integration patterns are
implemented.

� Access Integration pattern: Web services technologies allow us to integrate
various back-end services to provide a seamless front end that can be
accessed from multiple access channels.

� Application Integration pattern: Web services technologies simplify the
application integration process by enabling loose coupling between the
partner entities.

Application patterns
The Application pattern layer itself is unaffected by the introduction of a new
technology. Nevertheless, these Application patterns, using lower level Runtime
patterns, will allow enterprises to exploit Web services underneath some of these
patterns, as shown in Figure 6-5 on page 100.

 Chapter 6. Interoperability patterns 99

Figure 6-5 Application patterns whose runtimes could exploit Web services

Runtime and SOA patterns
Whenever a Runtime pattern shows two or more middleware nodes enabling two
applications to communicate, the introduction of SOA allows an additional option
for connecting these applications through a common bus rather than connecting
the applications pairwise.

Between selecting an Application pattern and choosing a Runtime pattern, there
is now an additional step for choosing whether to use a traditional or an SOA
Runtime pattern. On the Patterns for e-business Web site, every Runtime pattern
is being updated with an SOA variant. The new patterns have an [SOA] qualifier
before the Runtime pattern name.

Let’s take the Application Integration::Direct Connection application pattern as an
example.

� Direct Connection

The Direct Connection pattern is appropriate when the applications share the
same protocol and no adapter is needed, for instance when connecting two
EJBs using RPC over IIOP.

There are two variations of the Direct Connection pattern:

– Direct connection single adapter

This pattern is appropriate for simple point-to-point integration where there
is no requirement for reuse. The adapter is coupled to both applications
and therefore specific to this connection.

100 WebSphere and .Net Interoperability Using Web Services

– Direct connection federated adapters

The federated adapters pattern is suitable for point-to-point integration
where there is a reuse requirement for the connections. Each adapter is
effectively a half adapter. Two adapters are needed to connect two
applications together. One side of the adapter implements a specific
application connector; on the other side, all the adapters share a
connector to a common protocol.

Figure 6-6 Direct connection: federated adapter

A new application is integrated into any of the existing applications by
writing a half adapter to map between the new application and the shared
common adapter protocol; the other half adapter will already be
implemented for the existing application.

The [SOA} Runtime pattern variations on these are as follows.

� [SOA] Direct Connection

This is appropriate when the application is realized as a “native” service and
can connect directly to the service bus. What is “native” depends on the
implementation of the service bus. If the service bus is a WS-I compliant Web
services bus then the application service needs to be WS-I compliant to
connect directly to the bus.

– [SOA] Direct Connection single adapter

This variation is inapplicable: applications are always connected using a
common service protocol.

– [SOA] Direct Connection federated adapter

The [SOA] Direct connection federated adapters pattern is appropriate
when the application needs an adapter to connect it to the service bus. For
the examples in this book, we have used this variation to wrap our legacy
claims application in a WS-I compliant Web service.

Common protocol adapters

Half adapters

 Chapter 6. Interoperability patterns 101

Figure 6-7 [SOA}Direct connection federated adapters

The SOA approach should simplify the runtime topology of a solution. Whether it
does depends on a bus really being the seamless medium for connectivity shown
in the architecture diagrams and having the appropriate qualities of service for
the supported services. Guidance on the qualities of service to look for in a
service bus can be found in the Patterns books about Web services that are
beginning to appear, such as:

� Patterns: Implementing an SOA Using an Enterprise Service Bus,
SG24-6346

� Patterns: Service Oriented Architecture and Web Services, SG24-6303

In the case of the scenarios in this redbook, the main quality of service we are
looking for in the service bus is interoperability by requiring compliance with the
WS-I basic profile 1.1.

6.3 Applying Interoperability patterns
In previous sections, we have described the Patterns for e-business layered
assets model and patterns relevant to Web services. Now, in this section we will
identify, select, apply and investigate various patterns for the given business
scenarios, as described in Chapter 5, “Business scenarios” on page 69.

There is one simple scenario and one complex scenario we will implement that
will demonstrate using Web services to integrate a solution using WebSphere
and Microsoft .Net. components.

1. Merger and Acquisition scenario: in this scenario a large general insurance
company, Lord General Insurance (LGI), has acquired a typical modern

102 WebSphere and .Net Interoperability Using Web Services

dot.com auto insurance company, DirectCarInsure.com (DCI). LGI has a
large legacy IT infrastructure based on S/390 and CICS whereas DCI has an
e-business focused infrastructure based on Microsoft .Net.

2. External Claims Assessor Management: this scenario extends the first
scenario to external claims assessors.

6.3.1 Mergers and Acquisitions scenario
As discussed in 5.2.6, “Technical approach” on page 78, Web services are a
well-suited technology for this business scenario.

This scenario involves exposure of back-end business applications between
different organizations, so we have taken a leveraging services approach
(bottom-up, from legacy and packaged application).

Figure 6-8 shows high-level collaboration diagram for direct Internet access to
the merged insurance company. It shows that a user will interact with the
common front-end component and the common front-end component will
consume various services that are deployed on both the Organizations, LGI and
DCI.

Figure 6-8 Merger and Acquisition: high-level [PI] collaboration diagram

Now we will select patterns for the scenario and map the patterns down to
runtime components using the following steps.

1. Select Business patterns and Integration patterns.
2. Select Application patterns.
3. Apply Runtime patterns.

 Chapter 6. Interoperability patterns 103

4. Apply product mappings.

Select Business patterns and Integration patterns
Business patterns identify the interaction between users, businesses, and data.
In the claims registration scenario, we have users submitting their claim online,
from which we can infer the use of the Self-Service pattern. Composition with an
Application Integration pattern is also required to integrate the LGI and DCI
businesses. We applied these patterns to the Merger and Acquisition scenario,
as illustrated in Figure 6-9.

Figure 6-9 Business and Application Integration patterns

Select Application patterns
A Business pattern can be implemented using any of the Application patterns,
related to the corresponding Business pattern. Selection of different Application
patterns for the Business pattern provides solution flexibility so that the applied
Business pattern can address the specific needs of the business process. The
relevant Application patterns are as follows.

Application::Stand-Alone Single Channel
The Application::Stand-Alone Single Channel pattern is good for connecting a
Web delivery channel to a single back-end system. However, integration with the
rest of the enterprise is not automated in the interests of time-to-market and
minimizing application complexity.

104 WebSphere and .Net Interoperability Using Web Services

Figure 6-10 Stand-Alone Single Channel

In the case of claims registration, although time-to-market is of the essence, we
must integrate with the rest of the claims applications in both LGI and DCI.

Application::Directly-Integrated Single Channel
The Directly Integrated Single Channel pattern shown in Figure 6-2 on page 97
provides a structure for applications that need one or more point-to-point
connections with back-end applications but only need to focus on one delivery
channel. This Application pattern can also be used to implement any one of the
delivery channels.

This pattern is a closer fit to the claims registration scenario. The policy selector
application is responsible for selecting either the LGI or DCI claims application to
register the claim from the Web user.

Each of the connections between the new policy selector application and the
back-end applications uses a Direct Connection Application Integration pattern
as illustrated in Figure 6-11.

Figure 6-11 Direct-Connection Application Integration

 Chapter 6. Interoperability patterns 105

In the full claims registration scenario, there are multiple rather than a single
presentation channels; there is an agent channel and a call center channel in
addition to the Web channel.

One consequence of using the Direct Integrated Single Channel pattern is that
there will be no direct synchronization between different user channels other than
as a result of using common back-end claims and policy applications.
Historically, this has not been regarded as too big a problem in the insurance
industry. With integration between channels to enable Web and call center
channels to be used together cooperatively so as to improve the quality of
customer service, this pattern is not going to fit the needs of newer applications.

Application::Router
The pattern for providing applications with multiple presentation delivery
channels is the Application::Router pattern. The router becomes responsible for
the details of different delivery channels and for session management to couple
multiple delivery channels together to a single user.

Figure 6-12 Router pattern

As in the Application::Directly Integrated Single Channel pattern, the router
remains responsible for selecting the back-end application to handle the claims
registration.

There is a weakness in the preceding patterns from the perspective of integrating
the entire claims management process together so as to be able to modify and
monitor the process. There is no explicit connection between all the steps in

106 WebSphere and .Net Interoperability Using Web Services

registering a claim and then between registering the claims and the rest of the
claims handling process.

Application::Decomposition
The Decomposition pattern addresses this requirement. The
Application::Decomposition pattern shown in Figure 6-3 on page 97 extends the
hub-and-spoke architecture provided by the Application::Router pattern. It
decomposes a single, compound request from a client into several, simpler
requests and intelligently routes them to multiple back-end applications.
Typically, the responses from these multiple back-end applications are
recomposed into a single response and sent back to the client.

The decomposition tier would typically be implemented by a workflow process, in
our case by the claims handling workflow. Claims registration is the first
sub-process in the workflow.

Our scenario is a variation of the Application::Decomposition pattern. The user
submitting the claim initiates a claim workflow, receiving an acknowledgement
containing a claim ID. The claimant is not involved in the process until contacted
again.

To meet our business requirements, a further elaboration to the pattern will be
needed (to enable the claimant to rejoin the claims process to query or discuss
the status of their claim), either getting information about the status of a claim
directly from the Web or through a call center, or routing a query for manual
investigation by the claims handler.

Selected pattern
For the purposes of this redbook, and after exploring the interoperability between
Microsoft .Net and WebSphere, we chose to limit ourselves to the
Application::Directly Integrated Single Channel pattern combined with the
Application Integration::Direct Connection pattern. They are sufficient to build the
interoperability examples. The policy selector application will be responsible for
controlling the interaction steps involved in registering a claim in a sequence of
direct connections with the back-end LC and DCI systems. The mapping of the
Application patterns is show in Figure 6-13 on page 108.

 Chapter 6. Interoperability patterns 107

Figure 6-13 Selected Application patterns

Apply Runtime patterns
The next step is to choose Runtime patterns that most closely match the
requirements of the application and use the quality of service and policy
requirements. Each of the two Application patterns leads a choice from one or
more underpinning Runtime patterns.

Figure 6-14 on page 109 shows the Runtime pattern we selected for the directly
integrated single channel. This variation has a simple Web server redirector (also
know as a reverse proxy server) to load balance and act as the first line of
defense against hacker attacks by isolating the application server from the Web.

Note: The System House team that developed the scenario selected the
Application::Decomposition pattern because it addresses many more of the
business requirements of the scenario.

108 WebSphere and .Net Interoperability Using Web Services

.

Figure 6-14 Directly Integrated Single Channel application pattern:Runtime Pattern:
Variation 1

For the Application Integration::Direct Connection pattern, we selected the [SOA]
Direct connection federated adapters Runtime pattern (see Figure 6-6 on
page 101). The Service bus is a WS-I Basic Profile 1.1 compliant service bus.
We considered using the Extended Enterprise [SOA] Exposed Direct Connection
pattern between DCI and LGI and effectively having two service buses
connected between the organizations. The decision to use an Extended
Enterprise pattern would be based on the degree of autonomy in the
administration of the two merged companies. Purely for the purposes of
demonstrating interoperability of Web service for this redbook, we opted for a
single bus linking the two organizations. We collapsed LGI and DCI into a single
zone to emphasize that service buses should be contained within a zone. The
pattern for the Claims Assessor extension to demonstrate the use of
WS-Security will require the use of an Extended Enterprise pattern and will
demonstrate connecting two service buses inside and outside the enterprise.

Another alternative is to use the [SOA] Broker variation pattern with federated
adapters. The Broker pattern had a lot to recommend it in this scenario. Rather
than having the policy selector application sequentially query LGI and DCI to
match the claimant against a policy, there are benefits in having the policy
selector broadcast the claimant’s information over an Enterprise Service Bus and
let LGI and DCI try to match the details in parallel.

The Broker pattern would ideally use the more capable Enterprise Service Bus to
broadcast the claimant’s request and the legacy applications would use
specialized Enterprise Service Bus adapters implementing a publish-subscribe
protocol to attach to the legacy applications to the ESB. A halfway house would
be to have the broker use a WS-I compliant protocol across the service bus, and

 Chapter 6. Interoperability patterns 109

make the broker responsible for distributing requests and selecting the preferred
response.

With only two policy systems to concern us, we opted for the design which has
the policy selector application querying LGI and DCI sequentially to seek a match
to the claimant’s policy. If the endpoints being considered in the choice were
more numerous, or if they were continually changing, or if there were a clear
performance requirement to process the request selection in parallel, then there
would be a strong case for using a broker. In fact, in the Claims Assessor
extension to this scenario, we do consider using a broker. So, in the interest of
simplicity for the Claims registration scenario, we have opted to use the
Runtime::Direct Connection pattern.

The result of mapping the Runtime patterns is shown in the Figure 6-15.

The Runtime::Directly Integrated Single Channel pattern uses a Web server
redirector containing a Web server in the DMZ and an application server plug-in
in the intranet, to provide more security by keeping application server in the
internal zone. The Web server re-director is used to direct requests to the
application server and keeps the application server secured in the internal zone.
The Runtime::[SOA] DirectConnection pattern provides interaction between the
components within the enterprise using a service bus.

Figure 6-15 Application of Runtime patterns

110 WebSphere and .Net Interoperability Using Web Services

Apply product mappings
In the product mapping, we identify, select and map the logical nodes defined in
the Runtime pattern with the proven and tested products, which implement the
runtime solution design on a selected platform with the chosen qualities of
service and conforming to strategic IT policies concerning suppliers and
technologies. The product mapping identifies the platform, software product
name and version numbers of the products as well.

In the current scenario, we have two different platforms. LGI uses the
WebSphere platform whereas DCI is based on the Microsoft .Net platform.

For LGI, we have used WebSphere Application Server V5.1.1.1 on Windows
2003 to host all the services and applications, and for DCI we have used IIS 6.0
on Windows 2003 to host all the services, as shown in Figure 6-16.

It is at this stage in the refinement process that we can finally make the decision
to use WebSphere Studio Application Developer and Microsoft Visual Studio
.Net 2003 to generate the WS-I compliant Web services adapters.

Figure 6-16 Merger and Acquisition: Product mappings

6.4 Summary
In this chapter, we discussed how to combine the existing Business, Integration,
Application and Runtime patterns with an SOA approach. We then used the

 Chapter 6. Interoperability patterns 111

e-business patterns approach to select a product mapping for the claims
registration process in the Mergers and Acquisitions scenario.

6.5 Where to find more information
The following Web site provides a collection of IBM resources on the topic
Patterns for e-business.

http://www-106.ibm.com/developerworks/patterns/

112 WebSphere and .Net Interoperability Using Web Services

http://www-106.ibm.com/developerworks/patterns/

Chapter 7. Web services roadmap

This chapter summarizes the various existing and emerging specifications of
Web services. It then groups the services according to the Web services stack
layers. It provides a quick reference of different specifications to a developer in
one location.

7

© Copyright IBM Corp. 2005. All rights reserved. 113

7.1 Introduction
Web services are independent of platforms, applications and languages so that
users of a service need not know about the computers and software that make
the service available. Historically, Web services have worked smoothly only
when the producer and the consumer of a Web service were created using tools
from the same vendor such as Microsoft’s .NET or IBM’s WebSphere Studio
Application Developer. A Microsoft-created service may not provide functional
and quality service to an IBM-created consumer, or vice versa, because of the
different ways each company goes about implementing the Web services
specification. The differences do not exist because vendors do not agree on Web
service specifications. They do, but many specifications are not finalized, or the
specifications are written ambiguously, or the specifications provide options for
making the Web service flexible. Flexibility and ambiguity in specifications
sometimes result in inoperable Web service among different vendors.

Four initiatives are improving the practical interoperability of Web service
specifications in practice.

1. Specifications are revised and tightened up where ambiguities have been
found.

2. Vendors are running Web service workshops where interested parties get
together and test the interoperability of specific specifications and
combinations of specifications using scenarios.

3. The WS-I (Web service Interoperability) organization is publishing profiles to
restrict the use of specifications to ways that are known to interoperate, and
are publishing scenarios and tests for conformance.

4. WebSphere Studio Application Developer now includes WS-I conformance
checking so that new Web services are automatically checked for
conformance with WS-I.

This chapter describes the progress that is being made on Web service
specifications and provides a short description of each of the Web service
specifications.

7.2 List of Web services specifications1

There are many Web service specifications in different states from proposed in
principle, to standards that are approved and into revisions. Table 7-2 on
page 116 lists the status of most Web service specifications. A different view of

1 There is also a well-organized Web services roadmap at:

http://www.w3c.or.kr/~hollobit/roadmap/ws-specs/index.html

114 WebSphere and .Net Interoperability Using Web Services

http://www.w3c.or.kr/~hollobit/roadmap/ws-specs/index.html

progress in adopting Web service is shown in Gartner, Inc.’s “hype cycles.”
Figure 7-1 shows a view of Web services adoption in business in 2004.

Figure 7-1 Hype Cycle for Web services, 2004

From W.Andrews, D. Smith, C. Abrams, R. Wagner, R. Valdes, C. Haight, M.
Govekar, Gartner Strategic Analysis Report, 9 June 2004.
Reprinted with permission from Gartner, Inc.

Notable is the appearance of the WS-I organization in the Technology trigger
segment, with a very rapid (two year) expectation of adoption. Table 7-1 shows
how selected Web service techologies have progressed up the Hype cycle curve
between 2003 and 2004.

Table 7-1 Change in Web service adoption 2003 - 2004
(Based on information supplied by Gartner, Inc.)

 Chapter 7. Web services roadmap 115

Table 7-2 gives a summary of the existing specifications and their sponsors and
status as of 1 November 2004.

Table 7-2 Summary of Web service and related specifications

Specifications Title Publisher Status

BPEL4WS 1.1 IBM, BEA,
MSFT

2nd draft
5 May 2003

http://www-128.ibm.com/developerwo
rks/library/ws-bpel/

JSR 101 1.1 JCP Maint Rel
Oct 14 2003l

http://jcp.org/en/jsr/detail?id=10
1

JSR109 1.0 JCP Final
Sept 21 2002

http://jcp.org/en/jsr/detail?id=10
9

SOAP 1.1 W3C Note
8 may 2000

http://www.w3.org/TR/2000/NOTE-SOA
P-20000508/

SOAP 1.2 W3C Recommend
24 June 2003

http://www.w3.org/TR/soap12-part1/

UDDI 2.0 OASIS Standard http://www.oasis-open.org/committe
es/uddi-spec/doc/tcspecs.htm#uddiv
2

UDDI 3.0.1 OASIS Tech
Committee
Specification

http://www.oasis-open.org/committe
es/uddi-spec/doc/tcspecs.htm#uddiv
3

WS-Addressing W3C W3C Input
10 Aug 2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-add/

WS-AtomicTransactions IBM, BEA,
MSFT

Specification
Sept 2003

http://www-106.ibm.com/developerwo
rks/library/ws-atomtran/

WS-Attachments IETF(IBM and
MSFT)

Internal Draft
17 June 2002

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-attach.
html

116 WebSphere and .Net Interoperability Using Web Services

WS-Notification
WS-BaseNotification
WS-BrokeredNotification
WS-Topics

IBM, Sonic
Software,
TIBCO
Software,
AKAMAI
Technologies,
SAP AG,
Computer
Associates
International,
Fujitsu,Laborato
ries of Europe,
Globus,
Hewlett-Packard

Initial Draft
Specification
3 May 2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-notif
ication/

WS-BusinessActivity IBM, BEA,
MSFT

Initial Review
Specification
Jan 2004

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-busact/

WS-CAF
WS-CTX
WX-CF
WS-TXM

Futjitsu, IONA,
Oracle, Sun,
ArjunaTechnolo
gies

OASIS
Committee
Draft
Specification
July 8 2003

http://developers.sun.com/techtopi
cs/webservices/wscaf/

WS-Coordination 1.0 IBM, BEA,
MSFT

Initial Draft
Specification
Sept 16 2003

http://www-106.ibm.com/developerwo
rks/library/ws-coor/

WS-Eventing IBM, BEA,
Computer
Associates,
MSFT, SUNW,
TIBCO Software

Public draft
release
Specification
Aug 2004

http://www-106.ibm.com/developerwo
rks/webservices/library/specificat
ion/ws-eventing/

WS-Experience Language
(WSXL) 2.0

IBM Specification
10 April 2002

http://www-106.ibm.com/developerwo
rks/library/ws-wsxl/

WS-Federation Language
WS-Federation:Active
Requestor Profile
WS-Federation:Passive
Requestor Profile

IBM,
BEA,MSFT,
RSA, VeriSign

Initial Draft
Specification
8 July 2003

See White paper - Federation of
Identities in a Web service world, IBM &
Microsoft
http://www-106.ibm.com/developerwo
rks/library/ws-fedworld/

WS-I Attachments Profile
1.0

WS-I Final Material
25 Aug 2004

http://www.ws-i.org/Profiles/Attac
hmentsProfile-1.0-2004-08-24.html

Specifications Title Publisher Status

 Chapter 7. Web services roadmap 117

WS-I Basic Profile 1.0 WS-I Final Material
April 16 2004

http://www.ws-i.org/Profiles/Basic
Profile-1.0-2004-04-16.html

WS-I Basic Profile 1.1 WS-I Final Material
24 Aug 2004

http://www.ws-i.org/Profiles/Basic
Profile-1.1-2004-08-24.html

WS-I Simple SOAP
Binding Profile 1.0

WS-I Final Material
24 Aug 2004

http://www.ws-i.org/Profiles/Simpl
eSoapBindingProfile-1.0-2004-08-24
.html

WS-Inspection 1.0 IBM,MSFT Initial Draft
Specification
November
2001

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-wsilspe
c.html

WS-Manageability 1.0
WS-Manageablility -
Concepts
WS-Manageability-Repres
entation

IBM,Talking
Blocks,
Computer
Associates

OASIS
Submission
10 Sept 2003

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-manage/

WS-MetadataExchange IBM, BEA,
MSFT, SAP AG,
CA, Sun,
webMethods

Initial
Working Draft
Specification
Sept 2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-mex/

WS-Notification
WS-BaseNotification
WS-BrokeredNotification
WS-Topics

IBM, Sonic
Software,
TIBCO
Software,
AKAMAI
Technologies,
SAP AG,
Computer
Associates
International,
Fujitsu,
Laboratories of
Europe, Globus,
Hewlett-Packard

Initial Draft
Specification
3 May 2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-notif
ication/

Specifications Title Publisher Status

118 WebSphere and .Net Interoperability Using Web Services

WS-Policy
WS-PolicyAssertions
WS-PolicyAttachments
WS-PolicyFramework
WS-SecureConversation
WS-SecurityPolicy

IBM, BEA,
Computer
Associates,
Layer 7
Technologies,
MSFT,
Netegrity, Oblix,
OpenNetwork
Technologies,
Ping Identity
Corp, Reactivity,
RSA Security,
VeriSign,
Westbridge
Technology

Initial Draft
Specification
May - Sept
2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-polfr
am/

WS-Provisioning OASIS Initial call for
participation
Oct 2001
Draft 0.7
Oct 17 2003

http://www-106.ibm.com/developerwo
rks/library/ws-provis/

WS-Reliability OASIS Committee
Draft
24 Aug 2004

http://www.oasis-open.org/committe
es/tc_home.php?wg_abbrev=wsrm

WS-ReliableMessaging IBM, BEA,
MSFT, TIBCO

Review Draft
4 march 2004

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-rm/

WS-Resource
WS-ResourceLifetime
WS-ResourceProperties
WS-BaseFaults
WS-ServiceGroup

IBM,Globus
Alliance,Hewlett
Packard

Specification http://www-106.ibm.com/developerwo
rks/library/ws-resource/

WSRP 1.0 OASIS OASIS
Approved
August 2003

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-wsrp/
http://www.oasis-open.org/committe
es/download.php/3343/oasis-200304-
wsrp-specification-1.0.pdf

WS-Security 1.0
(WS-Security 2004)

OASIS OASIS
Approved
March 2004

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-secure/
http://docs.oasis-open.org/wss/200
4/01/oasis-200401-wss-soap-message
-security-1.0.pdf

Specifications Title Publisher Status

 Chapter 7. Web services roadmap 119

7.3 Summary of the Web services architecture stack
Figure 7-2 shows a classification of the WS-Specifications of which IBM is a
co-contributor. It omits the specifications from Table 7-2 that IBM has not
contributed to.

The major IBM and Microsoft sources for WS- specifications are to be found at
the developerWorks topic “Web services standards”:

http://www-128.ibm.com/developerworks/views/webservices/standards.jsp

and the MSDN topic, “Web services specifications”:

http://msdn.microsoft.com/webservices/understanding/specs/default.aspx

WS-Security Kerberos
Binding

IBM, MSFT Initial public
draft
Dec 2003

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dng
lobspec/html/ws-security-kerberos.
asp

WS-Transaction 1.0 IBM, BEA,
MSFT

Draft review
specification
9 Aug 2002

http://www-106.ibm.com/developerwo
rks/webservices/library/ws-transpe
c/

WS-Trust 1.1 IBM,BEA,Comp
uter Associates,
Layer 7
Technologies,
MSFT, Netegrity
Oblix,
OpenNetwork
Technologies,
Ping Identity
Corp, Reactivity,
RSA Security,
VeriSign,
Westbridge
Technology

Initial draft
specification
May 2004

http://www-106.ibm.com/developerwo
rks/library/specification/ws-trust
/

WSDL (Web Services
Description Language) 1.1

W3C (IBM and
MSFT)

Note
15 Mar 2001

http://www.w3.org/TR/2001/NOTE-wsd
l-20010315

WSDL (Web Services
Description Language) 2.0

W3C (IBM and
MSFT)

Working Draft
3 Aug 2004

http://www.w3.org/TR/2004/WD-wsdl2
0-20040803/

Specifications Title Publisher Status

120 WebSphere and .Net Interoperability Using Web Services

http://msdn.microsoft.com/webservices/understanding/specs/default.aspx
http://www-128.ibm.com/developerworks/views/webservices/standards.jsp

Figure 7-2 IBM Web services architecture stack

The dotted boundary encloses Web services specifications.

7.3.1 Foundations
The foundations of Web services architecture are the transport protocols and
XML and XML schemas.

Transport protocols
Http/Https version 1.1 is the synchronous application-level protocol that is most
commonly used with SOAP.

Java Messaging Service (JMS) is a reliable asynchronous alternative to Http:,
and because of the widespread use of WebSphere MQSeries in large
enterprises, is a viable choice for interoperable Web services. Its use is
discussed further in 8.8, “SOAP/JMS and SOAP/MQ” on page 188. SOAP/JMS
is not included in the Web service stack although it has been implemented by a
number of vendors; there is as yet no WS-* specification for SOAP/JMS.

 Chapter 7. Web services roadmap 121

SOAP-over-UDP has been proposed by Microsoft, Lexmark, BEA and Ricoh.
Since IBM is not a joint proposer it, too, has been omitted from the stack.

For a pointer to the levels of http transport protocols, see the references in the
WS-I Basic Profile 1.1, found at:

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references

XML
XML 1.0 is the current version referenced by the WS-I Basic profile 1.1. XML 1.1
is a recommendation of W3C.

There are two parts to the XML Schema Definitions (XSDs): structures and
datatypes. Particularly important for interoperability are the datatypes that are
supported by Web services. These datatypes, and their usage, enable the
mapping (or serialization) of hardware and language specific datatypes to a
SOAP message and vice versa.

There are two major issues to consider in serialization: the equivalence of
language-specific type mappings and any ambiguity in vendors choosing
different type mappings; this we found to be the case with the way arrays were
described in XML by WebSphere and Microsoft .Net. In the tables of type
mappings, Table 7-3 to Table 7-5, not all the types defined in the SOAP encoding
schema are clearly defined by Java or Microsoft .Net mappings.

There are also differences in usages of nillable and minoccurs in the
specification of arrays; these are dealt with by WS-I, but sometimes only by a
“recommended” rather than a “mandatory” usage definition.

These differences are not insurmountable, but one has to understand the
implications when using development tools that may be optimized to the vendor’s
own type mapping defaults; also, generated code may need some fine-tuning to
work as expected.

The data type mapping specifications for Java are documented in JSR 101 1.0
and 1.1. The column for Microsoft .Net mappings is taken from Interoperability
Fundamentals, MSDN December 2003:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/jdn
i_ch03.asp

There are some “?s” in the tables, where the Microsoft .Net type was inferred
where it couldn’t be found in the Microsoft .Net documentation.

122 WebSphere and .Net Interoperability Using Web Services

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/jdni_ch03.asp

Table 7-3 JSR 101 1.0 and Microsoft .Net mappings for built-in XML data types

JSR 101 also defines the rules for mapping arrays and complex structures, and
provides a tables of all the other types defined in the XML schema that are
derived in Java from the basic types. Examples includes types such as
xsd:gYear and xsd:unsignedLong.

In addition, the following rules are observed. If the XML type is defined to be
nillable, then the XML type is mapped to the Java wrapper class for the primitive
type. So, for example, int becomes java.lang.Integer.

Table 7-4 Additional SR 101 1.1 and Microsoft .Net mappings for built in XML data types

Simple Type Java Type Microsoft .Net Type

xsd:string java.lang.String String

xsd:integer java.math.BigInteger Int64(?)

xsd:int int Int32

xsd:long long Int64

xsd:short short Int16

xsd:decimal java.math.BigDecimal Decimal

xsd:float float Single

xsd:double double Double

xsd:boolean boolean Boolean

xsd:byte byte SByte

xsd:QName javax.xml.namespace.QName String (?)

xsd:dateTime java.util.Calendar DateTime

xsd:base64Binary byte[] Byte(Array)

xsd:hexBinary byte[] Byte(Array)

Simple Type Java Type Microsoft .Net Type

xsd:date java.util.Calendar DateTime (?)

xsd:time java.util.Calendar DateTime (?)

anyURI java.net.URI (J2SE 1.4 only)
java.lang.String

System.Uri

anySimpleType java.lang.String String (?)

 Chapter 7. Web services roadmap 123

Table 7-5 Additional Microsoft .Net and derived JSR 101 1.1 mappings

Microsoft .Net uses the System.Xml.Serialization.XmlSerializer class to map
between XML types and the Common Language Runtime (CLR).

SOAP
SOAP 1.1 is the current specification. See Chapter 2, “SOAP primer” on
page 11. SOAP 1.2 is a W3C recommendation.

7.3.2 Messaging
Messages carry information to and from a Web service. The messages specify
which operations to carry out in a Web service and provide data for the
operations.

In our stack, the messaging layer specifications also include definition of the
interaction model (point-to-point, publish-subscribe, broadcast,
request-response, one-way, asynchronous) and how attachments are transferred
(binary or formatted, inline or out-of-band by reference).

Currently, WS-I have restricted their consideration of interaction styles to (see
Figure 7-3)

1. One-way

2. Request-response

Simple Type Java Type Microsoft .Net Type

xsd:negativeInteger java.math.BigInteger System.Decimal

xsd:nonNegativeInteger java.math.BigInteger System.Decimal

xsd:nonPositiveInteger java.math.BigInteger System.Decimal

xsd:unsignedInt (?) UInt32

xsd:positiveInteger java.math.BigInteger System.Decimal (?)

xsd:unsignedLong java.math.BigInteger UInt32 or UInt64 (?)

124 WebSphere and .Net Interoperability Using Web Services

Figure 7-3 WS-I basic interaction models

WS-I have not yet dealt with more complex styles of interaction familiar to
MOM architects such as in Figure 7-4.

Figure 7-4 Examples of more complex point-to-point interaction styles

3. Callback (A message is solicited by the invoker, either as a separate callback)

4. Multi-hop (such as through a gateway or an ESB)

In the multi-hop example in Figure 7-4, the requests to a single provider are
routed through different gateways (by an load balancing scheme perhaps). In
this example, the gateway needs to be able to insert return routing

 Chapter 7. Web services roadmap 125

information so that the service provider returns the response through the
same gateway that fielded the request, and the response ends up at the
original requester.

5. Truly asynchronous response

Also in Figure 7-4, the truly asynchronous model does not return a response
to the request (and so can be implemented without a continuous connection
between the requester and provider) until it is ready to do so.

The requester lifeline may be interrupted, and the requester would have to be
restarted to respond to the request. Additional routing information is needed
so the response can be correlated to the original requester.

(6,7 and 8 are not illustrated by a figure)

6. Treating the response and fault message differently

7. Interactions with affinity, where the client addresses subsequent messages to
a service provider that is allocated dynamically on an earlier interaction

8. WS-I has also not tackled publish-subscribe (notification or event based
interaction styles)

WS-Addressing
The WS-Addressing standard proposed in 2003 introduces two new SOAP
concepts, Endpoint References (EPR) and Message Information Headers (MI) to
architect more complex interaction styles. The specification is defined in a way
that allows dynamically generated location references to be opaque to the
requester. WS-Addressing could be used to implement the interaction styles in
Figure 7-4. WS-Addressing is described in more detail in 8.3, “Interoperability
standards: addressing” on page 155.

WS-Notification
The WS-Notification standards proposals are based on a topic model of
publish-subscribe, and include the WS-Topic specification to describe the topic
space, WS-Base to describe interactions between producers and consumers,
and WS-Brokered which enables a publish-subscribe interaction style on behalf
of endpoints that do not themselves publish or subscribe messages.

Note: For an interesting article on the subtleties of implementing
WS-Addressing fully, see The hidden impact of WS-Addressing on SOAP,
Doug Davis, in IBM developerWorks, July 2004 at:

http://www-106.ibm.com/developerworks/webservices/library/ws-address.html

126 WebSphere and .Net Interoperability Using Web Services

http://www-106.ibm.com/developerworks/webservices/library/ws-address.html

WS-Eventing
The WS-Eventing standards proposal involves just producers and consumers. A
subscription sent by a consumer to a producer includes a filter expression to
determine whether a particular event is propagated to a particular consumer.

WS-Eventing is inherently a point-to-point topology and very suitable for use in
applications such as device control, whereas WS-Notification has a concept of a
topic space which enables centralized access management to topics and is
suited for distributing business information.

WS-Attachments
Although WS-I have finalized their SOAP attachments profile using existing
facilities in SOAP and standard MIME mechanisms to carry and reference
attachments, it looks unlikely to be adopted. For this reason, we haven’t worked
through any practical examples of using attachments in this redbook.

Attachments have presented SOAP architects with a number of problems:

1. The application inline binary attachment data within the SOAP envelope using
base64binary or hexBinary datatypes.

Example 7-1 Inline SOAP Binary

<SOAP:Envelope ... >

...
<Picture>FF0AB013</Picture>
...
</SOAP:Envelope>

This results in up to a four-fold expansion of the binary data and a processing
overhead as the binary data has to be converted to and from a “character”
representation to conform to XML’s UTP-8 or UTP-16 encoding
specifications.

Nonetheless, this is an extremely attractive way to exchange binary data as
you are well assured of interoperability and it is entirely compatible with the
rest of the SOAP architecture.

2. Placing the binary attachment out of line, as a part of a larger structure
outside the SOAP envelope, as in a Multipart message (MIME), leads to two
major difficulties:

a. How to address the binary parts? Schemes based on using identifying
tokens (SOAP with Attachments (SwA), see Example 7-2) and on offsets,
DIME (Direct Internet Messaging Encapsulation) have been proposed.

 Chapter 7. Web services roadmap 127

Example 7-2 SOAP with Attachments

<SOAP:Envelope ... >
...
<Picture>cid:peter@images.itso.ibm.com</Picture>
...
</SOAP:Envelope>
--MIME_boundary
...
Content-ID: <peter@images.itso.ibm.com>
FF0AB013
--MIME_boundary

For an introduction to DIME and how it includes attachments, start with
“Sending Files, Attachments, and SOAP Messages Via Direct Internet
Message Encapsulation”, by Jeannine Hall Gailey, found at
http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx

b. How to apply a uniform processing model efficiently to the SOAP message
and all its binary parts to deal with issues such as security.

What is needed is an attachment with the appearance that it is inline (in
the SOAP envelope), so that existing SOAP processes handle the binary
data just like anything else that appears in the SOAP envelope, but with
the efficiency of attaching the binary outside the SOAP attachment so that
it can be transmitted as raw binary rather than nibblized in some way.

The latest favored solution is Message Transmission Optimization Mechanism
(MTOM). The specification is undergoing rapid development with W3C and will
probably reach final recommendation by 2005. MTOM makes use of an XML
mechanism, XML Binary Optimized Package (XOP) to serialize the SOAP
envelope. From the point of view of software accessing the XML in the SOAP
message, the attachment appears as a base64Binary type. From the
transmission perspective, the raw binaries are placed into attachments. The XML
layers manage the translation between the wire format and the XML infoset.

To get the value of this solution, the XML layers must understand XOP encoding,
rather than passing the transmission format to the application. This requires
changes in the XML layers of the SOAP stack, but no changes to higher levels of
the stack. So for example, when calculating a digital signature to sign a SOAP
message, the security layer would calculate its hash on the base64Binary
representation of the binary data passed to the application by the XML parser. It
would not need code to go and locate the binary data in the transmission format
of the SOAP message. So the MTOM solution is seen as providing SOAP
processors with the appearance of an inline attachment, and yet the SOAP

128 WebSphere and .Net Interoperability Using Web Services

message contains the attachment outside the SOAP envelope, avoiding the
overhead of encoding the binary data.

7.3.3 Security
There are a number of Web service security specifications that provide
mechanisms not only to share information securely, but also to manage a
security infrastructure.

1. The joint IBM and Microsoft white paper, Security in a Web Services World: A
Proposed Architecture and Roadmap, found at
http://www-128.ibm.com/developerworks/webservices/library/ws-secmap/
is a good place to go to read more about Web service security specifications.

2. Section 8.4, “Security” on page 158 in this redbook is a detailed explanation
of the WS-Security 2004 specification

This section gives a brief description of the content of all the WS-* security
specifications.

Figure 7-5 Web service security specifications

WS-Security
Web services security specification 1.0 (WS Security 2004) addresses three
main security mechanisms to exchange information securely:

1. Sending security tokens as part of a message - enables authentication
2. Message integrity - digital signature
3. Message confidentiality - encryption

 Chapter 7. Web services roadmap 129

WS-SecurityAddendum
The SecurityAddendum corrects and clarifies the original WS-Security
specification.

WS-Trust
WS-Trust Language is a specification for establishing that the security tokens
exchanged in WS Security can be trusted. A simple example of the use of
WS-Trust would be to use it to require that a requester provides a security token
that proves that the request could only have been initiated by the requester. One
way for the requester to demonstrate this would be by using a digital signature
generated with a unique private key, the authenticity of which can be verified by a
third party certification agency.

WS-SecurityPolicy
WS-SecurityPolicy uses the WS-Policy generalized specification language for
describing the properties required of Web services as policies. An example of
using WS-SecurityPolicy would be to require “exactly one type of security token
is acceptable,” and that token “must be a Kerberos token.” Another example
would be to specify what set of encryption algorithms are acceptable. A further
example of a security policy would be to make an assertion about how old a
security token may be before it is invalidated.

WS-Privacy
WS-Privacy is a proposal for a specification for organizations creating,
managing, and using Web services to state their privacy policies and to require
that incoming requests make claims about the senders' adherence to these
policies. There is no proposed standard as yet. WS-Privacy is closely related to
Enterprise Privacy Authorization Language (EPAL 1.1)
(http://www.zurich.ibm.com/security/enterprise-privacy/epal/) which is the
basis for monitoring privacy in the use of Web services in emerging technology;
for example, see Declarative Privacy Monitoring for Tivoli Privacy Manager,
found at:

http://www.alphaworks.ibm.com/tech/dpm

WS-Federation
WS-Federation specifies how to manage and broker trust relationships in a
federated environment. It enables a user’s credentials to be established
indirectly and shared in a number of well defined trust relationships.
WS-Federation is used in implementations of federated identity management.

130 WebSphere and .Net Interoperability Using Web Services

http://www.alphaworks.ibm.com/tech/dpm

WS-SecureConversation
WS-SecureConversation defines how a security context is established and
managed to enable multiple messages to be sent securely. This specification
plugs a loophole in WS-Security which opens up when more than one message
is exchanged. An eavesdropper could record and replay a secure message
undetectedly. The second message would have the same credentials as the first
and not be detected as a spoofed message. So, for example, a deposit into a
bank account might be repeated. The WS-SecureConversation specification
secures the session so that messages cannot be replayed.

WS-SecurityKerberos
WS-SecurityKerberos builds on WS-Security, WS-Trust and
WS-SecureConversation to specify how Kerberos is used to secure Web
services

WS-Authorization
WS-Authorization will describe how access policies for a Web service are to be
specified and managed. No specification has been published for
WS-Authorization. The concepts are likely to be similar to the OASIS eXtensible
Access Control Markup Language (XACML):

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Summary
Figure 7-6 shows some of the relationships between the security specifications.

 Chapter 7. Web services roadmap 131

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Figure 7-6 Usage of Web services security specifications

7.3.4 Transacted
There are Web services specifications for reliable messaging and coordinating
and participating in transactions. These specifications enable transactional
interactions between Web services running on different platforms. As with other
Web services, the implementation is left for the platform vendor to decide. The
specifications define the services and protocol flows needed to make Web
services transactional.

The transactional specifications (but not reliable messaging) are based on the
OASIS Business Transaction technical Committee specification Business
Transaction Protocol 1.0 announced in May 2002. The standard is available from
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_c
ttee_spec_1.0.pdf

132 WebSphere and .Net Interoperability Using Web Services

Figure 7-7 Transaction models

There are four Web service transactional specifications being proposed by IBM,
BEA and Microsoft which enable the standard transactional usages shown in
Figure 7-7:

� WS-AtomicTransaction
� WS-Business Agreement
� WS-Coordination
� WS-ReliableMessaging

There are alternative Web service transactional specifications being proposed to
OASIS by Arjuna Technologies Limited, Fujitsu Software, IONA Technologies
PLC, Oracle Corporation, and Sun Microsystems called the WS-Composite
Application Framework (WS-CAF). There is also a reliable messaging proposal
before OASIS, called WS-Reliability, edited by Fujitsu Software, Oracle
Corporation, Sun Microsystems and Novell Inc. We will only look at the BEA,
Microsoft and IBM proposals for transactions and reliable messaging.

 Chapter 7. Web services roadmap 133

WS-AtomicTransaction
WS-AT, or Atomic transactions are the familiar ACID transactions (Figure 7-8)
found in CICS, J2EE and Microsoft Transaction Services (MTS).

Figure 7-8 ACID transaction properties

Section 8.6, “WS-Transactions” on page 179 has more details on
WS-AtomicTransactions. A technical preview of WS_AT is available for
WebSphere Application Server 5.0.2 at:

http://www.alphaworks.ibm.com/tech/wsat

WS-BusinessAgreement
The Business Agreement protocol is a proposed specification for implementing
long running transactions that do not behave in an ACID manner. Workflow and
business processes are examples of long running transactions.

WS-Coordination
WS-Coordination defines the Web services protocols to enable multiple
transaction coordinators to work together - for instance, to hand off coordination
of resources on another platform to another coordinator, rather than having all
resources managed by a single coordinator.

WS_Coordination describes a coordination service that includes an activation
service to initiate a new coordinator, a registration service to register resources
with the new coordinator, and a coordination protocol service to implement a
variety of different transaction protocols.

Section 8.5, “WS-Coordination” on page 177 has more details about
WS-Coordination.

WS-ReliableMessaging
WS-RM (Reliable Messaging) has been demonstrated by IBM and Microsoft in
October 2003, and is available as an Emerging Technologies Toolkit (ETTK) from
IBM alphaWorks®. WS-RM is a reliable messaging protocol, with similar
messaging qualities of service supported by IBM WebSphere MQSeries. It differs

134 WebSphere and .Net Interoperability Using Web Services

http://www.alphaworks.ibm.com/tech/wsat

from WebSphere MQSeries in being a protocol specification that vendors are
free to implement however they wish.

Section 8.7, “Reliable messaging” on page 182 has more details about
WS-ReliableMessaging.

7.3.5 Meta-data
The meta-data specifications, sometimes called the description specifications,
are concerned with providing a standard way to describe Web services to aid in
the discovery of Web services, understanding their interfaces, and describing
properties of the services.

WSDL
WSDL Version 1.1 is current and Version 2.0 is a W3C last call. Chapter 3,
“WSDL primer” on page 27 gives an overview of WSDL.

UDDI
UDDI (Universal Description, Discovery and Integration) is a specification and a
consortium. The specification is now into its third release, and the consortium
has moved on from the dot.com hyperbole that saw UDDI replacing traditional
supplier relationships with a cyberspace trading floor. The UDDI consortium has
adopted an evolutionary approach that seeks to provide a means for users to
control their trading relationships electronically. UDDI is described in Chapter 10,
“Deploying Web services” on page 215.

WS-Policy
WS-Policy provides a way to express the requirements, capabilities and
characteristics of a Web service. A policy is a collection of alternatives expressed
as PolicyAsssertions. WS-Policy provides a grammar for choosing between the
policy alternatives by using quantifiers such as “Exactly One” of a collection of
policy assertions. One example of would be to specify Kerberos as the only
acceptable provider of security tokens. WS-Policy doesn’t provide a means of
expressing the priority of one policy over another.

WS-PolicyAssertions
This specifies what policy assertions may be made about a Web service. There
are four types of policy assertion:

1. Text encoding
2. Natural language usage
3. Specification version
4. Message predicate - typically expressed using XPath

 Chapter 7. Web services roadmap 135

WS-PolicyAttachment
WS-PolicyAttachment specifies how a policy assertion is associated with a Web
service. It provides for two alternative means of attachment: directly, termed
intrinsic to a service, and indirectly or externally from the definition of a Web
service. When all the policies that are associated with a Web service have been
resolved, the resulting policy is termed the effective policy.

WS-Inspection
Web services Inspection Language (WSIL) pulls together references to different
kinds of service descriptions for a Web service. The two goals of WSIL are to
make the WSIL document easy for:

1. Clients to select only those service descriptions they will understand
2. Service providers to maintain by making it a collection of references, and not

the descriptions themselves.

Figure 7-9, taken from Peter Brittenham, An overview of the Web Services
Inspection Language, found at,
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover1
illustrates how WSIL documents relate to UDDI and other service descriptions.

Figure 7-9 WSIL and UDDI

WSIL documents form a hierarchy of descriptions like HTML pages. By using
naming conventions for the pages service providers, you can simplify the task of
searching and browsing WSIL documents.2

136 WebSphere and .Net Interoperability Using Web Services

The main historical difference between WSIL and UDDI has been that UDDI is
centrally maintained, whereas WSIL is not. The central maintenance of UDDI
has been perceived as one of its difficulties, as the entries in UDDI are thought to
reflect a lack of control of their content and authenticity. There are estimates that
two-thirds of UDDI entries are invalid, either dead links or badly formatted3.

By going to the Web site of the service provider themselves, the proponents of
WSIL suggest authenticity and quality issues could be addressed by the
providers themselves.

However, UDDI is evolving to meet these business needs. Version 3 of the UDDI
specification includes the capability for providers to digitially sign entries as proof
of their authenticity, and commentators see UDDI and WSIL as complementary
rather than competing technologies.

WS-MetadataExchange
This specifies two request-response protocols to retrieve meta-data about a Web
service. The two forms allow a request for a specific type of meta-data, for
example WS-Policy information, or to retrieve all the meta-data about a Web
service. This protocol is not intended to be a general purpose query mechanism.

7.3.6 Resources
The WS-Resources set of specifications were proposed by IBM, Globus, HP and
Fujitsu in May 2004. They define how to specify relationships between Web
services and stateful resources such as business entities like a business
agreement, or an IT entity - for example, the availability of a processor in a GRID.
A major motivation behind WS-Resources is the desire for an open GRID
architecture based on Web services. Resources, such as processors, are a
central concern of GRID computing. The WS-Resources specifications define
how to use Web service messages to express life cycle operations (Create,
Update, Delete), to address specific instances of resources using
WS-Addressing, and to notify interested parties when resources change state,
using WS-Notification.

2 In “WSIL: Do we need another Web Services Specification?”, by Tarak Modi, found at,
http://www.webservicesarchitect.com/content/articles/modi01.asp Tarak Modi argues that
WSIL could complement standard search engines like Google by providing a standard seachable
format of Web service descriptions.
3 SalCentral, a WSDL search engine, found at, http://www.salcentral.com/Search.aspx

 Chapter 7. Web services roadmap 137

7.3.7 Composition
There are two Web service interfaces for composition of applications, process
composition using BPEL4WS, and integration “on the glass” using portals,
WS-RP.

BPEL4WS
The BPEL4WS 1.1 is a specification for describing protocols between business
entities (called partners) using Web service messages.

Figure 7-10 Business process example from BPEL4WS specification

The basic concepts of BPEL4WS can be applied in either of two ways:

1. As an abstract process that defines the public relationship between the
partners. Only data that is relevant to the partner relationship is exposed as
message properties. Operation of the private processes in each of the
partners is opaque and is modelled as a non-deterministic choice between
outcomes.

2. As an executable process. The logic and state of the process determine the
nature and sequence of the interactions at each business partner. The
interactions are ideally implemented as Web services. Practically speaking,
however, parts of the implementation will use private platform dependent
functionality. The platform dependent interfaces can be modelled as Web

Partners

Flow
Sequences

Links

138 WebSphere and .Net Interoperability Using Web Services

services to maintain the integrity of the process definition and to connect the
legacy application to the business process.

BPEL4WS includes the ability to deal with:

� Data-dependent behavior.

� Exceptional conditions and their recovery using compensations.

� Long running interactions involving nested units of work and requiring cross
partner coordination.

BPEL4WS does not explicitly deal with:

� Data transformation or translation.

� Human workflow.

� Existing B2B concepts such as Trading Partner Agreements and protocols
like Resultant.

WS-RP
WS-Remote Portlets 1.0 was approved by OASIS in August 2003.

Portal producers publish applications using a Web service interface that
encapsulates an application and the user interactions as a portal. Portal
consumers aggregate portals from different producers and present them to end
users through a browser page. Figure 7-11 shows a weather portal and a human
resources (HR) portal being combined into a single employee portal.

Figure 7-11 Combining remote portlets

The advantage of remote portlets is that specific portals do not have to be
produced for each Web service. Remote portlets can be dynamically added to
the user’s environment.

 Chapter 7. Web services roadmap 139

The addition of Web services to remote portlets adds the capability of
discovering portlets though UDDI, as well as all the other benefits of using Web
services. WS-RP defines a set of attributes to define remote portlets to UDDI to
understand the capabilities of the portlet.

WS-RP defines four Web service interfaces for portal producers to aggregate
applications and present them as remote Web service portal interfaces to portal
consumers.

1. Service Description

Obtains the producer’s meta-data about a portlet

2. Markup

Returns the markup and processes users’ interactions with the portlet

3. Registration

An optional interface to set up a particular relationship or session between a
consumer and producer

4. Management

Another optional interface to get further meta-data, and to customize a portlet

7.3.8 Management
The WS-Management specifications were submitted to the OASIS Web services
Distributed Management technical committee in 2002 by IBM, Talking Blocks and
CA. The specification is sometimes known by its acronym, MUWS, Management
Using Web Services. WS-Manageability Concepts defines manageability
requirements and patterns. WS-Manageability Specification defines the model of
a manageable Web service endpoint, and WS-Manageability Representation the
XML representation.

WS-Manageability concepts
The manageability goals are:

1. Web service infrastructures to provide:
a. Standard metrics
b. Management operations including configuration control and lifecycle
c. Base set of management events
d. A standard way to access management capabilities of a Web service

infrastructure
2. Web services to:

a. Expose Web service specific metrics, configuration, operations and events
b. Support discovery of its management capabilities

140 WebSphere and .Net Interoperability Using Web Services

c. Define a standard way to access the management capabilities of a Web
service

There are two management patterns.

1. Consolidated Interfaces

Business functionality and manageability are offered by a Web service in a
single description of the service. The drawback of this simple pattern is that
all the management capabilities are exposed to a user who is only interested
in the business capability.

Figure 7-12 Consolidated Interfaces Management Pattern

2. Associated Interfaces

Manageability is offered separately to the business capability of a service. It is
more complex to implement, deploy and use for the managers of the service,
but it is much simpler for the developers and clients of the service’s business
capability. Two WSDL descriptions are needed for the business and
manageability interfaces, as well as a referencing mechanism to associate
the two service endpoints.

 Chapter 7. Web services roadmap 141

Figure 7-13 Associated Interfaces Management Pattern

WS-Manageability Specification
WS-Manageability Specification is a UML model of a manageable Web services
endpoint. The model has the capabilities needed for implementations to meet the
overall manageability goals stated earlier. In the model, a manageable endpoint
has a number of management topics (Identification, State, Configuration, Metrics
and Relationships) which are modelled as a number of different aspects
(Properties, Operations and Events).

Figure 7-14 Management endpoint

The WS-Manageability representation
WS-manageability representation provides the XML and WSDL syntax for the
WS-Manageability specification.

142 WebSphere and .Net Interoperability Using Web Services

7.3.9 Provisioning
The WS-Provisioning standard has been proposed by IBM to OASIS. The
specification defines protocols and operations to be used to manage computer
resources. The resources, such as accounts, software executables and
configuration files, are described using a provisioning markup language, such as
Service Provisioning Markup Language (SPML) that is now an OASIS standard.

7.3.10 WS-I
WS-I basic profile attempts to integrate different referenced specifications from
different layers of the standards stack to achieve greater interoperability among
vendors of Web services.

WS-I Basic Profile 1.0
Version 1.0. provides guidelines of interoperability for XML, XML Schema, SOAP,
WSDL, and UDDI.

WS-I Basic Profile 1.1
Version 1.1. WS-I Basic Profile 1.0 has been upgraded to WS-I Basic Profile 1.1
by relocating the SOAP Binding into a separate profile, Simple SOAP Binding 1.0
profile. WS-I Basic Profile 1.1 has also included corrections of the Basic Profile
1.0 Errata. It is now a final specification. The basic profile is discussed in depth in
8.2, “WS-I Basic Profile 1.0” on page 146.

WS-I Attachments Profile
Version 1.0 is a final specification. We have not discussed attachments in this
document because it is an area that is still undergoing significant change.

WS-I Basic Security Profile
Version 1.0 is being drafted. There are details in 8.4.3, “WS-I Security Profile” on
page 170.

7.4 Summary
We have listed the available and emerging standards for Web services in a table
with their sponsors and current status. These will be changed as some standards
will become specifications in the future and new standards will come out. We
grouped some of the standards into Web service stack layers and briefly
explained them.

 Chapter 7. Web services roadmap 143

144 WebSphere and .Net Interoperability Using Web Services

Chapter 8. Web service specifications

In this chapter, we discuss a few of the Web service standards in more detail,
focusing on those that are finalized and those that are important for delivering a
robust Web services implementation. We begin by introducing the WS-I
organization and describing the profiles it has defined.

8

© Copyright IBM Corp. 2005. All rights reserved. 145

8.1 Web service Interoperability Organization (WS-I)
WS-I is an organization that integrates the specifications from different standards
organizations and different vendor groups. It does not write the specifications,
does not guarantee interoperability and does not relax standards. It provides
advice, guidance, requirements, best practices, sample applications, use cases,
usage scenarios, restrictions, education and tools for testing conformance ; see
Figure 8-1.

Figure 8-1 Relationship of WS-I deliverables

Its goal is to achieve Web service interoperability among different vendors,
despite the fact that different vendors are free to implement Web service toolkits
differently by extending their functionalities.

WS-I references a set of standards which are listed in Appendix I of the Basic
Profile 1.1. It only addresses issues related to the set of standards. These
standards allow extensions (Appendix II of Basic Profile 1.0) which may result in
interoperability problems. WS-I does not limit the open-ended extensions of
these standards, but other profiles may place restrictions on these extensions.

8.2 WS-I Basic Profile 1.0
The Profile is a set of named and versioned specifications which guide the
implementation of the Web service so that it is more likely to be interoperable.

146 WebSphere and .Net Interoperability Using Web Services

The Profile requires conformance to a set of requirements for specifying the XML
tags in WSDL, SOAP, or UDDI to achieve interoperability.

The profile makes requirements statements about three kinds of artifacts:
MESSAGE, DESCRIPTION and REGDATA.

� MESSAGE - protocol elements that are exchanged (usually over a network) to
effect a Web service

� DESCRIPTION - descriptions of types, messages, interfaces and their
concrete protocol and data format bindings, and the network access points
associated with Web services (for instance, WSDL descriptions)

� REGDATA - registry elements that are involved in the registration and
discovery of Web services (for instance, UDDI models)

In addition, it states measures of conformance of the service instances, service
consumers and registries, by examining if the artifacts they produce and
consume are conformant.

Service instance/consumer must produce only conformant artifacts and must be
capable of consuming all conformant artifacts where multiple artifacts are
possible. Service instances and consumers must comply with requirements for
both sending and receiving Web service messages, as appropriate. That is,
software that implements both a service instance and consumer must be
conformant in both respects, or neither; it cannot be just a conformant service
instance or a conformant consumer.

Service Instances must provide a WDSL 1.1 service description or a UDDI
binding template, or both, to a consumer to be conformant. (The WSDL may be
made available “out-of-band”). It is not necessary to register a Web service in a
UDDI registry to be conformant.

Basic Profile 1.0 refers to the following standards (Appendix I of Basic Profile 1.0
specification) at the specified version levels:

Table 8-1 WS-I Basic Profile 1.0 base specifications

Specification URL

Simple Object Access Protocol (SOAP)
1.1

http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/

Extensible Markup Language (XML) 1.0
Second Edition

http://www.w3.org/TR/REC-xml

RFC2616: Hypertext Transfer Protocol -
HTTP/1.1

http://www.ietf.org/rfc/rfc2616

 Chapter 8. Web service specifications 147

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc2616

8.2.1 Basic Profile 1.0 for WebSphere
WebSphere Studio Application Developer 5.1.2 has an option for a developer to
set the level of compliance to the WS-I Basic Profile 1.0 in either the workspace
preference or the project properties. Use Window →Preferences →Web
services or right-click Project →Properties.

In addition, we can also use the Window →Preferences →Web
services →Code Generation option to configure WebSphere Studio

RFC2965:HTTP State Management
Mechanism

http://www.ietf.org/rfc/rfc2965

WSDL 1.1 http://www.w3.org/TR/wsdl.html

XML Schema Part 1: Structures http://www.w3.org/TR/xmlschema-1

XML Schema Part 2: Datatypes http://www.w3.org/TR/xmlschema-2

UDDI Version 2.04 API Specification http://uddi.org/pubs/ProgrammersAPI-
V2.04-Published-20020719.htm

UDDI Version 2.03 Data Structure
Reference

http://uddi.org/pubs/DataStructure-V
2.03-Published-20020719.htm

UDDI Version 2 XML Schema http://uddi.org/schema/uddi_v2.xsd

RFC2818: HTTP Over TLS http://www.ietf.org/rfc/rfc2818

RFC2246: The TLS Protocol Version 1.0 http://www.ietf.org/rfc/rfc2246

SSL Protocol Version 3.0 http://wp.netscape.com/eng/ssl3/draf
t302.txt

RFC2459: Internet X 509 Public Key
infrastructure Certificate and CRL Profile

http://www.ietf.org/rfc/rfc2459

Note: The WS-I uses:

� MUST to indicate that something is required

� SHOULD to indicate that it is recommended

The implications of not implementing a recommendation must be weighed.

� MAY to indicate it is truly optional

Options must not compromise the interoperability of the basic
implementation.

Specification URL

148 WebSphere and .Net Interoperability Using Web Services

http://www.w3.org/TR/wsdl.html
http://www.ietf.org/rfc/rfc2965
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/schema/uddi_v2.xsd
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2246
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2459

Application Studio 5.1.2 settings for different runtime environments such as
SOAP runtime or IBM WebSphere runtime. The Axis runtime codes can be
generated using command tools (java2wsdl and wsdl2java) outside of the
WebSphere Studio Application Developer. The IBM WebSphere runtime
environment conforms to the Basic Profile 1.0; SOAP and Axis runtime
environments do not conform to Basic Profile 1.0.

There are three levels of reporting compliance to the WS-I Basic Profile 1.0 in the
WebSphere Application Studio Developer 5.1.2:

� Requires compliance to Basic Profile 1.0

No error message will be generated, but the Web service proxy will not run if
it does not conform to the Basic Profile 1.0.

� (Default) Suggests compliance to Basic Profile 1.0

Warnings will be displayed in the task list of the WebSphere Studio
Application Developer 5.1.2, if there is non-conformance.

� Ignores Basic Profile 1.0

No error or warning will be displayed. WebSphere Application Studio
Developer 5.1.2 is allowed to generate code that is not conformant to Basic
Profile 1.0.

IBM WebSphere Studio Application Developer 5.1.2 also allows the option to
create a document/literal style, rpc/literal style or rpc/encoded style WSDL
description. However, Basic Profile 1.0 only allows the document/literal style and
rpc/literal style of binding in the WSDL description. Microsoft Visual Studio .Net
2003 only allows the document/literal style of binding in the WSDL description.

Also refer to the Microsoft guidance on interoperability with WebSphere Studio
Application Developer 5.1.2, found at:

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/ht
ml/wsinteroprecsibm-final.asp

8.2.2 Basic Profile 1.0 for Microsoft .Net
There are a number of WS-I requirements which may require our attention since
there is the possibility of generating a Microsoft .Net Web service that does not
conform to the Basic Profile 1.0, or requires clarification even though it conforms
to the Basic Profile 1.0.

WS-I Basic Profile 1.0 uses the tag R#### to accompany each requirement in
the profile. R1000 means requirement 1000 in Basic Profile 1.0.

Refer to the specification of the Basic Profile 1.0 and the Errata for all the
requirements to http://www.ws-i.org.

 Chapter 8. Web service specifications 149

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp
http://www.ws-i.org

Annotation of conformance in the message
Basic Profile 1.0 does not require the inclusion of conformance claims in the
WSDL description. Microsoft .Net Web service does not support including a
conformance claim when generating a WSDL description. We can include a
conformance claim in the WSDL for our Web services by saving the
auto-generated WSDL and then manually edit the WSDL file.

The following tables (Table 8-2 on page 151 to Table 8-7 on page 154) list the
WS-I rules that are described in Building Interoperable Web services, WS-I Basic
Profile 1.0, V1.0, Microsoft 2003. Only those rules that Microsoft .Net Web
services are either typically or potentially compliant with, or that are “unique”
(meaning you will have to make program changes to comply with WS-I Basic
Profile 1.0.), are listed.

You may need to make code changes to adhere to typically compliant rules, and
probably will need to make code changes to adhere to potentially compliant
rules. The table omits the rules with which Microsoft states it is compliant.

There are further technical details in the Microsoft document that you will need to
refer to.

WebSphere Studio Application Developer includes an automatic compliance
checker, so we have not constructed the equivalent tables for IBM.

The entries in the table are shaded as follows:

� Unique
� Potentially Compliant
� Typically Compliant

Note: These tables only list WS-I “MUST or MUST NOT” rules. By definition,
there is no compliance issue concerning WS-I “SHOULD” and “MAY” rules.

Because Microsoft .Net does not generate any soapbind:fault elements in
the WSDL description of a Web service, there are a number of rules that
Microsoft .Net complies with because the generation of more descriptive
WSDL is left as a task for the programmer. Microsoft classifies .NET as
compliant with these rules.

150 WebSphere and .Net Interoperability Using Web Services

Messaging
Table 8-2 Messaging requirements to take note of in Microsoft .Net

Number Rule Comments

R1000
R1001

R1003

Within the <soap:Fault>, we must only
have <faultcode>, <faultstring>,
<faultactor> and <detail> without any
qualified namespace, because these child
elements are local to <soap:Fault>. So, it is
incorrect to specify <soap:faultcode>,
<soap:faultstring>, <soap:faultactor> or
<soap:detail> with the soap namespace.

Within the <soap:Fault><detail>, there can
be zero or more child elements with any
qualified or unqualified namespace, except
the name of the SOAP 1.1 envelope,
http://schemas.xmlsoap.org/soap/envelop
e/

Microsoft .Net runtime automatically wraps any
exception that does not inherit from Microsoft
.Net SoapException class in a Microsoft .Net
SoapException. A SoapException only
includes the <faultcode>, <faultstring>,
<detail> and <faultactor>, when it is serialized
into a SOAP message. So, we must make sure,
when throwing the SoapException, that we only
include the detail parameter as the main
element of the <soap:Fault> and there is no
invalid element within the <soap:Fault>

When coding attributes in the <detail> element
for throwing Microsoft .Net SoapException,
make sure that you do not use the namespace,
http://schemas.xmlsoap.org/soap/envelope/

R1016 Within the fault message, we can
specify a language other than English
by using the attribute xml:lang in
<soap:Fault> <faultstring
xml:lang=”fr”>

Microsoft .Net SoapException class does
not support including an xml:lang attribute
on the faultstring element in the SOAP
response.

R1005 Basic Profile 1.0 does not allow the use of
<soap:encodingStyle> attributes on any
elements whose namespace is
http://schemas.xmlsoap.org/soap/envelop
e/

Do not use a SoapRpcMethodAttribute or
SoapRpcServiceAttribute in Microsoft .Net. In
addition, do not set the Use property to
SoapBindingUse.Encoded when using
SoapDocumentMethodAttribute or
SoapDocumentServiceAttribute in Microsoft
.Net.

R1006 Basic Profile 1.0 does not allow the use of
<soap:encodingStyle> within the
<soap:envelope> and the envelope’s
descendants; it does not allow
RPC/Encoded message format.

R1007 When using rpc-literal binding for a
message, we must not use the
<soap:encodingStyle> attribute on any
elements that are descendants of
<soap:body>.

Microsoft .Net does not support rpc-literal
binding.

 Chapter 8. Web service specifications 151

SOAP processing model
Table 8-3 SOAP processing model requirements to take note of in Microsoft .Net

HTTP in SOAP 1.1
Table 8-4 Http requirements to take note of in Microsoft .Net

Service description
The WSDL describes the operations and binding to a protocol so that the sender
and receiver know what to expect from the Web service.

Document structure
The document structure is defined in the WSDL 1.1 specification at
http://www.w3.org/TR/wsdl.html and is used to describe Web services.

Table 8-5 WSDL document structure requirements to take note of in Microsoft .Net

Number Rule Comments

R1025 A receiver must check for mandatory
headers in the message before processing
the message.

Microsoft .Net Web service does not check for
mandatory headers in the message before
processing the message. It determines if the
mandatory header is understood by checking if
either the SoapHeaderAttribute is declared for
the header or if the DidUnderstand property of
the header is set to true.

Number Rule Comments

R1130 The consumer may automatically redirect
a request when it encounters HTTP status
code of “307 Temporary Redirect.”

We must explicitly set the HTTP status code to
307 and add a Location HTTP header.

R1125 Basic Profile 1.0 states an instance
must use a 4xx HTTP status code for
responses that indicate invalid format
of the request.

The Microsoft .Net Web service behavior, by
default, is to return a 500 HTTP status code
on error.

Number Rule Comments

R2002 Basic Profile 1.0 requires the use of the
XML Schema to “import” XML Schema
Definitions.

The Microsoft .Net Web service uses
WebServiceBindingAttribute to generate XML
Schema import of a XML schema definition,
provided the location attribute is specified with
a non-empty string value.

152 WebSphere and .Net Interoperability Using Web Services

http://www.w3.org/TR/wsdl.html

Messages
A WSDL message is an abstract definition of the data either presented as a
document or arguments which can be used in a method invocation.

Table 8-6 WSDL messaging requirements to take note of in Microsoft .Net

Bindings
A WSDL binding defines the message format and protocol for operations and
messages defined by a particular port-type. SOAP binding is the most used
transport for WSDL in Web service and the only binding in the WS-I Basic Profile.
The SOAP specification contains rules to map the abstract representation of data
types, messages and operations to their physical representation.

R2005 Basic Profile 1.0 requires that the
targetNamespace attribute on the
wsdl:definitions element of an imported
WSDL description to have the same value
as the namespace attribute on the
wsdl:import element of the importing
DESCRIPTION.

When we specify the
WebServiceBindingAttribute in Microsoft .Net,
the Microsoft .Net Web service includes a
wsdl:import element, but we must make sure to
specify the namespace property to have a
value matching the targetNamespace attribute
on the wsdl:definitions element of the WSDL
description specified in the location property.

Number Rule Comments

Number Rule Comments

R2210 Basic Profile 1.0 requires that the
corresponding abstract wsdl:message
define zero or one wsdl:parts when a
document-literal binding in a
DESCRIPTION does not specify the parts
attribute on a soapbind:body element.

The Microsoft .Net Web service generates the
a WSDL description that typically defines a
single wsdl:part for a wsdl:message when
using document-literal binding. However, when
using a SoapDocumentServiceAttribute or
SoapDocumentMethodAttribute with the
ParameterStyle property having a value of
SoapParameterStyle.Bare, there can be no
wsdl:part defined in the WSDL description. So,
we must avoid using SoapParameterStyle.Bare
to conform to Basic Profile 1.0.

R2203 Basic Profile 1.0 requires that an
rpc-literal binding in the soapbind:body
of a DESCRIPTION refer only to
wsdl:part elements that have been
defined using the type attribute.

The Microsoft .Net Web service does not
generate a WSDL description with an
rpc-literal binding. The Microsoft .Net Web
service only supports the use of
document-literal bindings.

R2211 Basic Profile 1.0 requires that a
MESSAGE using rpc-literal binding not
to have part accessors with the xsi:nil
attribute set to 1 or true.

 Chapter 8. Web service specifications 153

Table 8-7 WSDL binding requirements to take note of in Microsoft .Net

Number Rule Comments

R2705 A wsdl:binding in a description must either
be an rpc-literal binding or a
document-literal binding.

The Microsoft .Net Web services generates
WSDL description that uses document-literal
binding. We must not use a
SoapRpcMethodAttribute or
SoapRpcServiceAttribute to avoid
interoperability problems.

R2706 A wsdl:binding in a description must use
the value of literal for the use attribute in all
soapbind:body, soapbind:fault,
soapbind:header, and
soapbind:headerfault elements.

The Microsoft .Net Web service generates
WSDL description that uses the literal value for
the use attribute on all soapbind:body and
soapbind:header elements. but the Web
service does not generate
soapbind:headerfault and soapbind:fault
elements. We must not use
SoapRpcMethodAttribute or
SoapRpcServiceAttribute to avoid
interoperability problem.

R2710 The operations in a wsdl:binding in a
description must result in operation
signatures that are different from one
another.

The Microsoft .Net Web service generates a
WSDL description having a wrapper element of
the same name as the Webmethod to ensure
unique operation signature. However, using
SoapDocumentMethodAttribute with the
ParameterStyle property set to
SoapParameterStyle, we must then ensure that
the parameters of our Webmethod are unique
within the Web service.

R2717 Basic Profile 1.0 requires rpc-literal
binding to have the namespace
attribute specified on the soap:body
elements and the namespace value to
be an absolute URI.

The Microsoft .Net Web service generates a
WSDL description with a document-literal
binding only.

R2726 Basic Profile 1.0 requires rpc-literal
binding not to have namespace be
specified on soapbind:header,
soapbind:headerfault and
soapbind:fault elements.

R2725 If an INSTANCE receives a message
that is inconsistent with its WSDL
description, it must check for
VersionMismatch, MustUnderstand, and
Client fault conditions in that order.

The Microsoft .Net Web service checks for a
VersionMismatch error first. It then checks
for a Client error after parsing the message
for the header and parameter value. We
must first check for MustUnderstand faults in
our methods.

154 WebSphere and .Net Interoperability Using Web Services

8.2.3 Summary
Although these tables look rather forbidding, to quote the Microsoft article on
interoperability (cited above on page 148) “... it is apparent that interoperability
using Web services developed on the Microsoft.NET Framework 1.1 and IBM
WSAD 5.1.2 is most definitely achievable today. ... [It is] testament to how well
both Microsoft and IBM have implemented the WS-I Basic Profile 1.0 for their
implementations of Web services.”

8.3 Interoperability standards: addressing
WS-Addressing was submitted to W3C in August 2004, but has not yet been
approved as a standard. It is implemented in IBM’s Emerging Technologies
Toolkit (ETTK), available from alphaWorks. In this section, we will see how it
enables dynamic change of endpoints, asynchronous and stateful
communication.

The standard submitted to W3C can be found at:

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810

8.3.1 Insurance example
Rather than simply working through the standard itself, we can best understand
what it does and why it is useful if we use an example. Let’s consider the
insurance example developed in this book. Lord General Insurance (LGI) makes
Web service calls to external assessors to establish whether they are available
for particular assessments. In a simplistic version of this example, these calls
would just be synchronous request-response messages. However, we will
consider a more realistic scenario, as shown in Figure 8-2 on page 156.

R2738 A message must include all
soapbind:headers specified on a
wsdl:input or wsdl:output of a
wsdl:operation of a wsdl:binding that
describes it.

We must not set the Direction property of the
SoapHeaderAttribute to
SoapHeaderDirection.Fault, because the
WSDL description includes the soap:header
element on the wsdl:output while the response
message does not.

Number Rule Comments

 Chapter 8. Web service specifications 155

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810

Figure 8-2 LGI communicating with external assessor, using WS-Addressing

In a simple scenario, the endpoint (that is, the address) that LGI is sending its
messages to is fixed. This is fine for simple systems. However, suppose the
assessor’s server goes down and they want messages to be handled by their
back-up system. If the endpoint is fixed, they have no way of doing this.
However, WS-Addressing defines the wsa:EndpointReference element
specifically so that we can dynamically change endpoints. In this more
sophisticated scenario, LGI’s initial call is simply to obtain the endpoint of the
checkAvailability service. This information is returned in the SOAP header,
like all information exchanged using WS-Addressing. This is because the
information is meta-information: it is about the SOAP message, rather than being
part of the message. Hence, the return message header might resemble
Example 8-1.

Example 8-1 A Web service endpoint dynamically obtained using WS-Addressing

<wsa:EndpointReference>
<wsa:Address>https://www.carAssessor123.com/checkAvailability</wsa:Address>

</wsa:EndpointReference>

This means that the assessor can change the endpoint of this service at will. This
kind of flexibility means that in addition to re-routing to a backup system, a
business can seamlessly switch from an old system to a new one, or can decide
to outsource one of its services.

Having obtained the endpoint, LGI then sends a message to the assessor,
asking if they are available for a particular assessment. In a simple

Get endpoint of checkAvailability

checkAvailability URL
<wsa:Address>

Send assessment details

Request further information
<wsa:RelatesTo>

<wsa:ReferenceProperty>

Send further information
<wsa:ReferenceProperty>

Send final decision

1

2

3

<wsa:MessageID>

LGI External
Assessor

System
decides
between

synchronous
and

asynchronous
response

Assessment
details
saved in
database

156 WebSphere and .Net Interoperability Using Web Services

implementation, the assessor’s system might just check their diary, and if they
are free, will say that they are available. However, suppose that for some more
complex assessments, the assessor system takes a long time to process the
request and may need to ask for further details. In this situation, we would need a
system that could respond either synchronously (if no complex processing is
involved) or asynchronously (if it is). How can we do this?

When LGI sends in the assessment details, the SOAP header includes a
message identification:

<wsa:MessageID>uuid:48454857</wsa:MessageID>

If the assessor’s system can deal immediately with the availability check, it sends
the response straight back. If the request is going to require more processing
and further information, the system creates a database entry of the assessment
details which it associates with a reference number. It then establishes what
further information is required and sends a message back, the header of which
contains the following elements.

Example 8-2 Use of wsa:RelatesTo and wsa:ReferenceProperty

<wsa:RelatesTo RelationshipType=”wsa:ReplyTo”>
uuid:48454857

</wsa:RelatesTo>
<wsa:ReferenceProperty>

<assessor:AssessmentID>193953785</assessor:AssessmentID>
</wsa:ReferenceProperty>

So, even though this reply is asynchronous, the LGI system knows what earlier
message it refers to, because it uses the wsa:RelatesTo element and gives the
unique identifier of the earlier message.

At this point, we need to stop and consider the consequences of this aspect of
WS-Addressing. What we are describing is a dynamic decision to respond to a
message either synchronously or asynchronously. However, for this to happen,
the system which sent the message must be able to cope with this behavior. If,
for example, a system has sent a SOAP message over Http, ordinarily the reply
would come synchronously. Unless current systems are updated, if the
immediate Http response is empty, and the real reply comes several minutes
later, the systems may throw an error upon receiving the empty reply and not be
listening for the real one. So, in order for WS-Addressing to work, when systems
send messages, they must be capable of dealing with either a synchronous or an
asynchronous response.

When the LGI system has obtained the extra information required, it sends it
back to the assessor. How does the assessor system know which assessment it
relates to? The LGI system can use the wsa:ReferenceProperty previously sent

 Chapter 8. Web service specifications 157

back by the assessor. When the assessor receives this reference, they know
which database entry it refers to. Thus, we see a third use of WS-Addressing: it
enables stateful interaction in which, rather than each message exchange being
one-off, messages can form a series. Note also that the LGI system does not
have to understand the <assessor:AssessmentID> tag that is returned within the
<wsa:ReferenceProperty>. The LGI system simply knows that this reference is
being used to identify this particular communication session and that it must
include it when it replies to the assessor. The introduction of just one new
element (the wsa:ReferenceProperty) gives us the immense power of stateful
communication.

8.3.2 Summary
We have seen that although WS-Addressing only introduces a few new XML
elements, they give us a great deal of power. There are three main capabilities
introduced by the standard:

� Dynamic change of endpoints
� Asynchronous messaging
� Stateful communication

We have also seen that for dynamic asynchronous messaging to work, the
message sender must be able to cope with an asynchronous response.

8.4 Security
Security is essential for Web services to be widely adopted for e-commerce. In
the following section, we discuss the need for additional Web service security
standards above and beyond the security already available on the Internet, and
the proposal from WS-I for a basic Web services security profile.

8.4.1 Why do we need more security specifications?
When we approach Web services security for the first time, we might be tempted
to ask why we need more security specifications. Computer networks already
use a number of security protocols, such as the Secure Sockets Layer (SSL) or
Kerberos; why are these not sufficient?

Consider a very simple example, in which a client accesses a Web service
across a network:

158 WebSphere and .Net Interoperability Using Web Services

Figure 8-3 Client accessing a Web service

Why do we need to ensure that this communication is secure?

� Authentication and authorization. We need to be able to identify the client, so
that we know what they are and are not allowed to do.

� Message integrity. How do we know that the message sent by the client has
not been tampered with since they sent it? A hacker could have intercepted
the message and changed it. To prevent this, we can digitally sign our
message so that the recipient knows it has come from us.

� Message confidentiality. If we want the message to be private, we need to
encrypt it.

So, why can't we use pre-established protocols to achieve these aims? For
example, https is the version of http that uses SSL as a transport level protocol
which allows us to encrypt any message we send. Web services security, on the
other hand, is message level security. Let's compare transport level and
message level encryption:

Figure 8-4 Transport level encryption using https

As we can see, in transport level encryption, the message is not encrypted
before transport, but only as it is being sent across the network. As soon as it has
reached its destination. the receiving http server is in possession of a decrypted
message.

 Chapter 8. Web service specifications 159

By contrast, with message level encryption, the encryption of the message is
entirely separate from the process of sending it across the network.

Figure 8-5 Message level encryption

We encrypt the message, then give it to a server to send. What the server starts
off with is thus already encrypted. When it is received by a server at the other
end, this server also sees the message as encrypted. A separate decryption
stage will be required, utilizing the appropriate key.

What advantages does using this message level Web services security give us
over simply transport level security?

� The message stays encrypted until it is explicitly decrypted. Contrast this with
the transport level security in Figure 8-4 on page 159. In that scenario, once
the message has been received by the second http server, it is already in
decrypted form. If we perform further manipulation of the message, we need
to consider its security. If the area behind our server is insecure in some way,
for example not directly under our control, we have nullified the effect of
encrypting our messages during transport, because a hacker can read them
after they have been received.

� We can save processing time by choosing which sections of the message
need to be encrypted. By contrast, with transport level encryption, we always
have to encrypt the entire message.

� We can encrypt our sensitive data while at the same time leaving the routing
information unencrypted. This means that we can send our messages via
intermediaries such as firewalls. With transport level encryption, if we want a

160 WebSphere and .Net Interoperability Using Web Services

server to forward our message on, it must decrypt the message and encrypt it
again. With message level security, at each intermediary, the routing
information can be read and the message routed correctly, while the data
remains confidential.

Figure 8-6 Example of selective encryption - data is encrypted, routing information is not

We can see that there are definite reasons why we need specifications for
message-level Web services security. Now we will look at one of the most
fundamental protocols.

8.4.2 WS-Security 2004
The WS-Security specification was first proposed in draft form by IBM, Microsoft
and Verisign in April 2002. It was the first document to define standards for the
three most basic security tasks: authentication, digital signature and encryption.
It defines these standards for Web services calls made using SOAP. The
Organization for the Advancement of Structured Information Standards (OASIS)
group has recently approved several documents as part of the final version of
this specification. At the time of writing, three documents have been published by
OASIS:

� SOAP Message Security V1.0 (WS-Security 2004)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-securi
ty-1.0.pdf

� Username Token Profile V1.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-prof
ile-1.0.pdf

� X.509 Token Profile V1.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0.pdf

First, we will examine what the standard defines for each of the three basic
security tasks, then go on to look at some of the other definitions in WS-Security

 Chapter 8. Web service specifications 161

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

2004 and what additional power and flexibility they give us in applying
authentication, digital signature or encryption.

Authentication
WS-Security 2004 defines three methods of authentication:

1. Username only.

Figure 8-7 Authentication by username only

In a safe environment, such as inside a company firewall, we may want to
provide services to people that are tailored to their needs, without needing the
security afforded by passwords. For example, if none of the services being
accessed use confidential information or can be used maliciously,
identification purely by a username sent as plain text might be sufficient.

2. Username and password as plain text.

Figure 8-8 Authentication by username and password sent as plain text

The next level of security is to require users to have passwords and to send
them as plain text to the server. This should only be used when we know that
the message cannot be intercepted to read the password.

162 WebSphere and .Net Interoperability Using Web Services

3. Username and password digest.

Figure 8-9 Authentication using password digest

This is the most secure form of authentication defined by WS-Security 2004.
Rather than sending the password in plain text, the sender takes the SHA-1
hash of the password before sending it. The SHA-1 algorithm is defined by
the US National Institute for Standards and Technology (NIST).

Digital signature
A message is digitally signed by taking a hash of the message to create a digest,
then encrypting this digest with the sender's private key and attaching the result
to the message. When the recipient receives the message, they decrypt the
digest, using the sender's public key, then take their own hash of the message
and compare the two. If the message has been tampered with, the new digest
will not match the decrypted one.

 Chapter 8. Web service specifications 163

Figure 8-10 The process of creating and verifying a digital signature

WS-Security 2004 builds on the earlier XML Signature standard proposed by
w3c. As such, the algorithms specified are the same:

� For creating the digest, the SHA-1 hash algorithm is used. The algorithm
must be identified by declaring it with the element:

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

� Two methods of encrypting the digest are allowed: the Digital Signature
Algorithm (DSA) and RSA. They must be identified by using the following
elements:

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

Encryption
WS-Security 2004 allows either symmetric encryption with a secret key, or
asymmetric encryption with an encrypted session key. Let’s review what each of
these processes involves. In symmetric encryption, the sender encrypts the
message with a secret key. The recipient must use this same key to decrypt the
message.

Message

Hash

Encrypted
Digest

Digest

Encrypt

Message

Hash

Encrypted
Digest

Digest

Decrypt

Digest

Compare

Sender Receiver

164 WebSphere and .Net Interoperability Using Web Services

Figure 8-11 Symmetric encryption using a triple DES key

However, there is a problem with this method: how does the sender securely give
a copy of the key to the recipient? If the key is copied by a third party while in
transit, they will be able to read all of the encrypted information. To get around
this problem, the public-private key mechanism was developed. In this system,
keys exist in pairs. If one is used to encrypt a message, the other must be used
to decrypt it. So, anyone wishing to receive confidential information generates a
key pair. They keep one key private and make the other key publicly available. If
we wish to send someone a message, we use their public key to encrypt,
knowing that only they possess the private key necessary to decrypt it.

Asymmetric encryption is secure, but slow. To get the best of both worlds, most
encryption is now done using a hybrid of the symmetric and asymmetric systems.

D e c r y p te d
D a ta

R e c e iv in g S e r v e r

U n e n c r y p te d
D a ta

S e n d in g S e r v e r

E n c r y p te d
D a ta

E n c r y p t w i th
T r ip le D E S

K e y

D e c r y p t
w ith S a m e

K e y

 Chapter 8. Web service specifications 165

Figure 8-12 Hybrid of symmetric and asymmetric encryption

In this system, the sender first generates a symmetric key. This key will only be
used for one communication session, so it is usually referred to as the session
key. The sender uses it to encrypt the message. They the sender encrypts this
key itself, using the public key of the message recipient, and attaches the
encrypted key to the message. Then, when the recipient gets the message, they
use their private key to decrypt the session key and then use that to decrypt the
message. Because the session key is only used once, even if someone
managed to discover it, they would only be able to decrypt one message.

WS-Security 2004 has full support for these types of encryption. Again, it is
based on an earlier standard: XML Encryption from W3C. A variety of encryption
algorithms are allowed.

� Symmetric encryption using the triple-DES algorithm should be identified with
the element:

<EncryptionMethod
Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”>

� Encryption of a triple-DES session key can be identified with the element:

<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5”/>

Now that we have looked at the fundamentals of the three security tasks defined
by WS-Security 2004, let’s examine some of the related concepts it defines and
how they allow us to leverage the standard.

Security tokens
We need a method to encode binary security information such as a certificate.
For example, when digitally signing a message, one’s public key certificate is
usually included with the message, so that the recipient can use it to decrypt the

Send Together

Encrypted
Data

Encrypted
Session Key

Unencrypted
Data

Encrypt with
Triple DES

Session Key

Triple DES
Session Key

Encrypt with
Recipient's
Public Key

166 WebSphere and .Net Interoperability Using Web Services

digest. The SOAP Message Security document only defines the generic format
for binary security tokens.

Example 8-3 Binary security token format

<wsse:BinarySecurityToken wsu:Id=...
EncodingType=...
ValueType=.../>

The specification of individual types of binary security token is intended to be
dealt with by other documents. So, for example, the X.509 Token Profile defines
three kinds of X.509 tokens, as shown in Table 8-8.

Table 8-8 Defined X.509 binary security tokens

A separate specification for Kerberos tokens is currently in draft form.

Encryption ReferenceList
The encryption ReferenceList allows one to define which sections of the SOAP
message are to be encrypted. We saw that selective encryption is one of the
advantages of message-level security and this standard enables this feature.

Actors
The specifications for SOAP define the concept of an actor. Let’s examine how
this concept applies to WS-Security 2004. If we want to have a message read
and processed by one server, then passed on to other servers for further
processing, and do all this securely, we want to be able to target different security
information at these different recipients. The WS-Security 2004 standard enables
you to have multiple security headers in a single SOAP message. Each of these
headers can identify which recipient (or actor) needs to process it. Then, when a
particular recipient has processed the message and is ready to forward it, it can
choose to modify any of the existing security headers, or add another one.

Token ValueType URI Description

Single certificate #X509v3 An X.509 certificate

Certificate path #X509PKIPathv1 An ordered list of X.509 certificates
packaged in a PKIPath

Set of certificates and
certificate revocation
lists (CRLs)

#PKCS7 A list of X.509 certificates and CRLs

 Chapter 8. Web service specifications 167

Let’s consider how actors might be used in the insurance example developed in
this book. LGI, the insurance company, wants to request a specific external
assessor to compile a report for a particular car insurance claim.

1. LGI sends a Web services message to the assessor, and digitally signs it so
that the assessor can verify that it is genuine.

2. The assessor’s scheduling system receives the message and books the time
in the assessor’s diary.

3. It then adds a second signature (its own) to the message and forwards it to
the assessor’s report database.

4. This system verifies that the message has genuinely come from the
scheduler by checking the digital signature.

5. It then takes the car details from the message and uses them to create a
skeleton report.

Figure 8-13 Use of actors in WS-Security 2004

This demonstrates how a message may be processed by multiple systems (in
this case, the scheduler and the report database) while at the same time
ensuring that each stage of the message processing and transfer is secure.

Scheduling System

Books time in
diary and

signs message

LGI
Signature

Scheduler
Signature

SOAP
Body

Verifies scheduler
signature and

creates skeleton
report

LGI
Signature

SOAP
Body

Report Database

LGI Insurance
requests assessor to

perform an assessment

1

5

4

3

2

168 WebSphere and .Net Interoperability Using Web Services

WebSphere makes use of this technique by having a Web Services Gateway,
which provides a single endpoint that external messages are sent to. It then
routes them to the correct WebSphere Web service. For more information, see
Employ the IBM WebSphere Web Services Gateway by Michael Ellis, found at:

http://www-106.ibm.com/developerworks/library/ws-routing/?ca=dnt-537

Errors
In order to react appropriately when a secure communication fails, we need
defined error messages. SOAP Message Security defines two messages for
unsupported actions and five for failures. These messages are returned using
the fault mechanism that is part of the SOAP standard.

Table 8-9 Unsupported action errors

Table 8-10 Failure errors

This brings us to the end of our examination of the WS-Security 2004 standard.
We can see that it contains a number of important definitions, allowing us to
perform authentication, digital signature, encryption and processing by multiple
recipients. However, this specification by itself does not directly address
interoperability. We will now go on to examine one that does.

Error Fault message

An unsupported token was provided. wsse:UnsupportedSecurityToken

An unsupported signature or encryption
algorithm was used.

wsse:UnsupportedAlgorithm

Error Fault message

An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurity

An invalid security token was provided. wsse:InvalidSecurityToken

The security token could not be
authenticated or authorized.

wsse:FailedAuthentication

The signature or decryption was invalid. wsse:FailedCheck

Referenced security token could not be
retrieved.

wsse:SecurityTokenUnavailable

 Chapter 8. Web service specifications 169

http://www-106.ibm.com/developerworks/library/ws-routing/?ca=dnt-537

8.4.3 WS-I Security Profile
The Web Services Interoperability Organization (WS-I) is a multi-vendor group,
whose aim is to ensure that different implementations of Web services can
interoperate. It published the draft Security Profile 1.0 on 12 May 2004:

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html

One might suppose that, providing all vendors have implemented a particular
standard, such as WS-Security, their Web services will interoperate. However,
there are two reasons why this might not be the case:

1. There may be ambiguities in the original standard which were not noticed
when it was agreed.

2. There may be flexibility in the standard which hinders interoperability. For
example, suppose one section of a standard defines two valid ways of doing
something. If one vendor uses one by default, while another vendor uses the
other, their implementations will fail to work together, even though both are
correctly implementing the standard.

It was for these reasons that the WS-I was set up. Clearly, to solve the first
problem, the WS-I has to remove the ambiguity. To resolve the second, it can
either declare that one of the options is not valid if a vendor wishes to claim WS-I
conformance, or it can say that both vendors must be able to cope with both
alternatives.

Conformance to the Profile
The WS-I Security Profile has a number of sections. Some are considered part of
the base profile, others are extensibility points. Of course, some vendors may
choose not to implement the extensible parts of the profile, and one should not
assume they are present in an implementation unless it explicitly documents
them. Furthermore, even when we exclude the extensibility points, the remainder
of the profile is still subdivided into four sections, so that vendors can explicitly
state which sections they conform to. The division is as follows (this is not
intended as an exhaustive list):

1. Core:

– Transport layer security
– Security tokens
– Security token references
– Timestamps
– References
– Processing orders
– Signature
– Encryption
– Algorithms

170 WebSphere and .Net Interoperability Using Web Services

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html

2. Username tokens

3. X.509 Certificate Tokens

4. Attachments

Let's now examine the clarifications made by the profile, and why they have been
necessary.

Transport layer security
We know that in addition to using Web services message level security, we can
also use https to ensure our messages have transport level security. However,
there are some ways of using https which are insecure. Two usages are
specifically banned by the profile for this reason:

1. SSL V2.0. This has known security flaws.

2. The use of a SOAPACTION header. When a SOAP message is sent over
http, the message contains a SOAP header and SOAP body, both contained
in a SOAP envelope. These elements are all part of the http message.
However, the protocol for http transport means that the http message itself
has a header:

Example 8-4 An http message header with a SOAPACTION line

POST /authorizationsample/weblogservice.asmx HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPACTION: "http://www.onlinebookstore.com/orderBook"
Content-Length: 1094

We can see that this header contains a line entitled SOAPACTION. This line
affects how the message will be processed when it is received. Ordinarily, this
would not cause any problems. However, if we are sending a secure
message using https, the http header will not be encrypted. Hence the
SOAPACTION line could be changed. Even thought the message itself may
be encrypted, changing the header could affect how it is processed. In order
to keep our message completely secure, the profile forbids the use of a
SOAPACTION header in messages sent using https.

Security tokens
Specification of binary security tokens is made more explicit by two rules:

 Chapter 8. Web service specifications 171

1. Base64Encoding must be specified as the encoding type.

2. The ValueType of the binary security token must be specified. For example,
X.509v3.

Security token references
With a very simple use of a binary security token, such as encrypting the entire
message, the token is only used once. Hence one might assume that we could
insert the token into the message inline, just before it is used. However, consider
a situation in which the same token is used several times in one message. For
example, if we sign and encrypt different sections of the message. We can see
that it is impractical to repeat the token. Rather, we need a way to reference the
token whenever it is needed. While these references are very useful, there are a
large number of ambiguities related to using them, so the profile places
constraints on their use. Let’s look at the more important constraints:

1. You must use the wsse:SecurityTokenReference tag for your references.
Using the reference tags defined by older standards such as the XML Digital
Signature standard is not allowed. The wsse:SecurityTokenReference must
have a ValueType attribute.

2. When using a wsse:SecurityTokenReference tag, the recommended way to
refer to it is by using an XPointer to refer to its wsu:Id attribute. A XPointer is
the traditional method of reference used in html documents to refer to other
sections of the same document. For example, URI=#MyCertificate.

3. If direct reference is not possible, two alternatives are permitted:

a. Embedding the security token directly within the reference.

b. Using a wsse:KeyIdentifier.It must have a ValueType attribute with one
of the specified values.

4. A key name should never be used to identify a key. (This was allowed in the
XML Digital Signature standard.)

5. A binary security token must precede the first wsse:SecurityTokenReference
to it. This ensures that the binary token is readily available when it is required.

Timestamps
By including a timestamp with each of our messages, we can ensure that no one
can intercept our message and re-send it later. The timestamp precludes this
because it contains the time when the message was created and when it expires.
If a message is received outside of these times, the recipient knows to ignore it.
The profile specifies the following format for a timestamp:

172 WebSphere and .Net Interoperability Using Web Services

Example 8-5 A valid timestamp

<wsu:Timestamp wsu:Id="timestamp">
 <wsu:Created>2001-09-13T08:42:00Z</wsu:Created>
 <wsu:Expires>2001-10-13T09:00:00Z</wsu:Expires>
 </wsu:Timestamp>

References
References are the mechanism we use to refer to another part of the SOAP
message. Sections of the message are identified by Id values so that we can
refer to them. Of course, if several sections of the message had the same Id
value, the reference would be ambiguous. Hence the profile specifies:

� All Id values must be unique.

Processing order
Consider what happens when we both encrypt and digitally sign a message. The
recipient needs to know in what order the two processes were done. The profile
specifies the constraint:

� The receiver must get the correct result if they process the elements in the
order in which they appear in the security header.

Digital signature
1. Enveloping signatures, as defined by the XML Signature specification, are not

allowed. An enveloping signature is where a signature signs all of the data
contained within the XML tags of the signature element. This contrasts with a
detached signature, which references a separate section of the XML
document that it is signing. Enveloping signatures limit the ability of
intermediaries to process the message, since they cannot alter the
information contained within the signature tags.

 Chapter 8. Web service specifications 173

Figure 8-14 The difference between enveloping and detached signatures

2. References saying which part of the message is being signed should be
made by using an XPointer to refer to an Id attribute. If the necessary Id
attribute does not exist, the XPath Filter 2.0 transform must be used to form
the reference.

3. If the public key certificate is included in the message to allow the recipient to
easily verify the signature, it must be referred to by a ds:Reference within the
signature, to prevent substitution of the certificate by another with the same
key. (If the certificate was substituted for a certificate with a different key, the
digital signature verification would fail. But if a certificate with the same public
key, yet purporting to come from a different person, was substituted, the
signature verification would succeed.)

Encryption
1. xenc:EncryptedKey elements must precede the data they have been used to

encrypt. This is to ensure that when the SOAP message is being processed,
the relevant decryption keys are to hand.

2. xenc:EncryptedKey and xenc:EncryptedData elements must specify their
encryption method by using the xenc:EncryptionMethod child element.

3. SOAP envelope, header or body elements must not be encrypted. These
elements are not part of the message, rather they contain the message. The
SOAP envelope, header and body elements will be parsed before their
contents. Hence, if they were encrypted, when the parser reached them, it
would not know which elements they were. So it would not know to extract the

E n v e lo p in g
S ig n a tu re

In fo rm a tio n
b e in g s ig n e d

O th e r d a ta
w ith in

s ig n a tu re ta g s

In fo rm a t io n
b e in g s ig n e d

D e ta c h e d
S ig n a tu re

O th e r d a ta

E n v e lo p in g
s ig n a tu re

D e ta c h e d
s ig n a tu re

174 WebSphere and .Net Interoperability Using Web Services

decryption information from the information within them. Hence it could not
process the message.

4. A digest value for data that is subsequently encrypted must also be
encrypted.

Algorithms
The algorithm most frequently used for symmetric encryption in recent years is
the triple DES algorithm. In this system, data is encrypted with one key,
decrypted with another and encrypted with a third. However, this system is really
just a short term solution to the disadvantages of using the aging DES algorithm.
The Advanced Encryption Standard (AES) was chosen in 2001 by the US
government to be used for encrypting all non-classified data and is now gaining
wide acceptance. The WS-I profile hence makes the following recommendation:

� Transport level security should use the AES algorithm.

Username tokens
We have seen that three different types of username tokens are defined by the
WS-Security 2004 specification. The following constraints are placed upon their
use:

1. Each wsse:Password element must have a Type attribute, which must be one
of the allowed types.

2. If a password digest is used, it must be calculated by the following method1:

1 A NONCE is a Number than can only be used ONCE. (Actually the true derivation is from
Anglo-Saxon http://dictionary.reference.com/search?q=nonce) A Nonce used correctly prevents
replay attacks.

 Chapter 8. Web service specifications 175

Figure 8-15 The mandated method for creating a password digest

X.509 Certificates
When a certificate is used for encryption or digital signature, the recipient must
be able to confirm it is genuine by tracing the certification path back to a trusted
certification authority. However, there are multiple ways this information can be
encoded in X.509 certificates. Only two are allowed:

� X509PKIPathv1 (preferred)

� PKCS7

Attachments
The WS-I has a separate attachments profile. Hence the specification simply
requires that profile is obeyed:

� WS-I Attachments profile must be implemented.

� All attachments that are encrypted or signed must be referenced by a
wsse:Security reference.

8.4.4 Summary
We have seen that although many security standards already exist, such as
transport level security using SSL, message level Web services security offers
several advantages:

N once
(R andom N um ber)

Tim e
C rea ted P assw ord

C onca tena te

+ +

H ash w ith
S H A -1

A lgo rithm
D iges t E ncode

in B ase 64

176 WebSphere and .Net Interoperability Using Web Services

� Messages are secure until explicitly processed.
� We can save time by only applying security to sections of our messages.
� We can route messages via intermediaries and still keep them secure.

The two most fundamental security specifications are WS-Security 2004 and the
WS-I Security Profile. WS-Security 2004 defines standards for basic security
processes such as authentication, digital signature and encryption. Two related
documents published by OASIS define username tokens and X.509 security
tokens.

The WS-I Security Profile clarifies ambiguities in many of the OASIS standards,
including:

� Transport layer security
� Security tokens
� Security token references
� Signature
� Encryption
� Algorithms
� Username tokens
� X.509 Certificate Tokens

Vendors should implement the WS-I Security Profile to ensure their products will
interoperate.

8.5 WS-Coordination
WS-Coordination specification is part of the Web service transaction layer; it has
been authored by IBM, Microsoft and BEA and current release is dated
September 16, 2003.

WS-Coordination addresses all business processes requiring a composition of
multiple Web services in a single workflow; the resulting artifact is subsequently
exposed as a new single Web Service. This context is typically related to the
implementation of a Service-Oriented Architecture in which Web services are
considered as basic building blocks for new applications development. In such
an environment, each Web service part of the whole process must be
coordinated with the other ones to guarantee a consistent final state after
process completion both in case of success and fault.

WS-Coordination standard achieves Web services coordination by means of a
specific coordination service, also known as coordinator; it enables participants
to reach consistent agreement on the outcome of distributed activities.
Agreements are based on coordination protocols which are suited for specific
activities.

 Chapter 8. Web service specifications 177

Coordinator services are themselves exposed as Web Service. They are shown
in the following list:

� ActivationService

– CreateCoordinationContextRequest message
– CreateCoordinationContextResponse message

� RegistrationService

– RegisterRequest message
– RegisterResponse message

The Activation Service creates the CoordinationContext object which is then
returned to the service requestor, while Registration Service registers the
application for a specific application protocol.

WS-Coordination specification details all request and response messages for the
activation and registration service and the CoordinationContext type structure.
As shown in Figure 8-16 on page 179, CoordinationContext is composed by the
following three main objects:

� An activity identifier
� The endpoint to the registration service
� A Coordination type. Each coordination type can support multiple protocols

The WS-Coordination framework is considered extensible as new protocols or
new extension elements to current protocols can be added to the framework
itself. However, coordination types are detailed only in the WS-Transaction
specification.

178 WebSphere and .Net Interoperability Using Web Services

Figure 8-16 WS-Coordination and WS-Transaction objects

Currently, neither the WebSphere nor the Microsoft platforms implement the
WS-Coordination standard.

8.6 WS-Transactions
WS-Transaction specification extends the WS-Coordination defining
coordination types. A coordination type is a defined set of coordination
behaviors, called coordination protocols specifying how the Coordinator should
complete the task or the process. Coordination types use the WS-Coordination
framework to define rules which both the Coordinator and participants must
adhere to during their communications.

Current WS-Transaction specification defines two coordination types:

1. Atomic Transaction (AT)
2. Business Agreement (BA)

Each of these coordination types contain a number of coordination protocols. For
example, the Atomic Transaction coordination type contains the following
coordination protocols:

 Chapter 8. Web service specifications 179

� Completion
� CompletionWithAck
� Volatile2PC (phaseZero protocol)
� Durable2PC (two-phase commit protocol)
� OutcomeNotification

At the time of writing this book, a WS-AT implementation is provided for
WebSphere 5.1 as technology preview downloadable from IBM alphaWorks site:

http://www.alphaworks.ibm.com/tech/wsat

As detailed in the previous section, WS-Coordination is a Web service itself. This
means that both client and server using SOAP messages for requests and
response do not depend upon knowing each others development environment.
Therefore WS-AtomicTransaction must be able to interface with any other
transaction service coded using any programming language which supports
WS-AtomicTransaction.

Interoperability of WS-AtomicTransaction across transaction services and
programming languages was shown at a demo hosted by IBM and Microsoft.
The demo application architecture is shown in Figure 8-17 on page 181. A
Microsoft .Net application server beginning a non-JTA transaction making Web
Service invocations to two WebSphere Application Servers and another
Microsoft .Net server. Each of the application servers use their underlying
transaction service to perform transactional work. Every time you invoke a Web
Service you switch to using WS-Transaction. When the originator completes the
transaction, you use the WS-Transaction technology to coordinate each of the
participants to ensure that they all complete as if they were a single unit of work.

180 WebSphere and .Net Interoperability Using Web Services

http://www.alphaworks.ibm.com/tech/wsat

Figure 8-17 WS-AtomicTransaction interoperability demo between WebSphere and
Microsoft .Net

8.6.1 WS-Transaction in a WebSphere environment
The WS-AT for WebSphere Application Server is a technology preview that
provides transactional support for Web services. It allows distributed Web
Service applications, and the resources they use, to take part in distributed
global transactions. A transaction is a set of operations that must be executed as
a single unit, often called a logical unit of work. A transaction is either completed
in its entirety or not at all; it is indivisible or “atomic.”

WS-AT for WebSphere Application Server uses the standard JTA support in the
J2EE programming model to scope transactions. JTA transactions are
interpreted by the WS-AT for WebSphere Application Server runtime
environment into CoordinationContexts such that a WS-AT representation of the
current JTA transaction is made to flow upon Web service application requests.

If WS-AT for WebSphere Application Server is the system hosting the target
endpoint, it automatically establishes a JTA transaction in the target's runtime
environment, which becomes the transactional context under which the target
Web service application will run. When the Web service request enters the target
server, WS-COOR is used to register for participation in the 2PC protocol. The
2PC protocol is driven by the caller's WS-AT coordinator at completion of
transaction.

 Chapter 8. Web service specifications 181

No explicit registration of participants is required by the application developer.
The WebSphere Application Server runtime environment takes responsibility for
the registration of WS-AT participants, in the same way as it does the registration
of XAResources in the JTA transaction to which the WS-AT transaction is
federated. When the transaction is completed, all XAResources and WS-AT
participants are atomically coordinated by the WebSphere Application Server
Transaction Manager.

If a JTA transaction is active on the thread when a Web Service Application
request is made, the transaction is propagated across on the SOAP/HTTP
request and established in the target's environment. This is analogous to the
distribution of transaction context over IIOP as described in the EJB
specification. Any transactional work performed in the target environment
becomes part of the same global transaction.

8.6.2 WS transaction in a Microsoft .Net environment
Please refer to the IBM Redbook WebSphere MQ Solutions in a Microsoft .Net
Environment, SG24-7012 for details about Web Services transactions
implemented in Microsoft .Net platform.

8.7 Reliable messaging
Reliable messaging is important for Web services. Businesses need to be sure
that critical message exchanges can be completed without loss, compromise or
duplication of messages, and that messages have been delivered to the right
recipient, in the right order and by a certain time.

Currently the burden is placed on Web service applications to ensure that
exchanges are successfully completed. But this puts a lot of complexity onto the
shoulders of the application writer. Assuring message delivery needs
cooperation between the sender and receiver, part of that complexity involves
getting agreement about how to acknowledge message delivery. Without a
reliable messaging standard businesses are faced with designing and
maintaining different reliable messaging protocols for different Web services.

One solution is the WS-ReliableMessaging specification from BEA, IBM,
Microsoft and TIBCO. The specification is still under review and evaluation. In
common with some other WS-* specifications that are being jointly developed the
vendors hold regular workshops to thrash out a practical implementable
specification and to demonstrate its interoperability. The last
WS-ReliableMessaging workshop was held in May 2004. See
http://www-106.ibm.com/developerworks/offers/WS-Specworkshops/ws-rm2004
05.html for details of this workshop.

182 WebSphere and .Net Interoperability Using Web Services

There is an alternative Reliable Messaging specification being developed
through OASIS by a number of other vendors. Currently the two protocols do not
interoperate.

There is also the tactical solution of binding SOAP to a reliable messaging
transport such as JMS. We look at SOAP/JMS in the next section of this chapter.

8.7.1 What is WS-ReliableMessaging?
WS-ReliableMessaging is part of the Web services solution for delivering
messages reliably between enterprises. The intention of the
WS-ReliableMessaging specification is to be composable with other WS-*
specifications such as WS-Addressing, WS-Security, WS-Transaction,
WS-Policy to enable vendors to deliver a complete solution to the overall
objective of delivering messages reliably. As well as being efficient and
interoperable between vendors, the challenge for the architects defining the
ReliableMessaging specification is that it can be combined with these other WS-*
specifications to meet the goals of a reliable enterprise messaging solution in
support of a Service-Oriented Architecture.

The scope of the WS-ReliableMessaging specification itself is limited to defining
protocol between sender and receiver endpoints that ensures delivery. The
protocol is based on the three legged handshake protocol, adjusted to meet
various different assurances of delivery.

� At-least-once delivery
� At-most-once delivery
� Exactly-once delivery (= At-least-once + At-most-once)
� In-order-delivery

8.7.2 The three legged handshake protocol
The three legged handshake protocol is simple because it doesn’t require any
coordinator, unlike the WS-Transaction specifications.

Figure 8-18 on page 184 shows how the protocol is used to establish a session
between the sender and the receiver. The goal of the protocol is to establish a
point in the interaction for each participant when a participant knows both its and
its partners state. Either participant can then proceed with further interactions
knowing that it has established a unique session with its partner.

In the diagram, this point is represented by the dark dotted line; more precisely,
for the sender in Figure 8-18 on page 184 it is point 1a and for the receiver, point
1b. The session can be torn down by either party. In the example the sender
knows at point 2a that the session is deleted, and the receiver at point 2b.

 Chapter 8. Web service specifications 183

Figure 8-18 Three legged handshake

8.7.3 WS-ReliableMessaging Protocol
Figure 8-19 on page 185 shows use of the three legged protocol model to send a
message exactly once using the WS-ReliableMessaging protocol. Before the
protocol can start the endpoints need to be established, their mutual capabilities
checked, and security exchanges completed to establish trust. Then the protocol
steps are:

184 WebSphere and .Net Interoperability Using Web Services

Figure 8-19 WS-ReliableMessaging protocol

1. The sender has sent a CreateSequence request and received a unique
sequence token in the form of a URI. This is the CreateSessionACK in the
three legged handshake model confirming the receiver is ready to play.

2. The sessionACKACK (Sequence(Uri1,Msg1) is signalled by labelling the first
message in the sequence 1. Each of the messages has a unique sequence
number within the sequence

3. The receiver receives message 3 (Sequence(Uri1,Msg3,LastMsg) with a
LastMsg flag. This is effectively a DeleteSession request from the sender. It
signals transfer is complete.

(In the example, message 2 was sent and not received).

4. The receiver responds listing all the messages it has received
(SequenceAcknowledgement(Uri1,AckRng[1,3]) - This is effectively the
DeleteSessionACK

The sender notes that message 2 was not received. It responds by
re-sending message 2 again requesting an ACK, rather than sending a
TerminateSequence (a DeleteSessionACKACK).

5. The receiver responds, indicating the range of messages it has received

6. This time, the sender is happy the receiver has got all the messages it sent
and sends the receiver a TerminateSequence (a DeleteSessionACKACK).
Both participants have now ended the exchange.

 Chapter 8. Web service specifications 185

8.7.4 Reliable messaging requirements
IBM and Microsoft have published a white paper “Reliable Message Delivery in a
Web Service World: A Proposed Architecture and Roadmap”, March, 2003 found
at http://www-128.ibm.com/developerworks/library/ws-rmdev/. The white
paper examines a scenario based on a distributor who wants to transfer
inventory and account information to a supplier using Web service over the
Internet. Based on this scenario five specification requirements are identified,

1. Transferring responsibility for reliable message delivery from the application
developer to the Web service infrastructure.

2. Load balancing in a cross organizational context using WS-Addressing
3. Dealing with unreliable message delivery by using WS-ReliableMessaging
4. Dealing with different systems capabilities by exchanging meta-data between

the Organizations
5. Dealing with message confidentiality and authenticity using WS-Security

specifications
6. Dealing with system availability and peak load problems using

WS-TransmissionControl

An implementation of an enterprise strength reliable messaging solution has to
consider other requirements that are beyond the scope of the reliable messaging
specification:

1. Providing a persistence mechanism to satisfy the delivery assurances
2. Increasing availability of Web services by de-coupling the Web service

requester and provider from the cross-organizational messaging process.
3. Increasing throughput by multiplexing Web service requests between different

requesters and providers onto single network and reliable messaging protocol
sessions.

4. Reducing the application’s burden of managing undeliverable messages by
transferring responsibility for undeliverable messages to the infrastructure

5. Increasing availability by Transferring a stalled “in-flight” message sequence
to an alternative machine - not necessarily to a hot-failover on the same
network transport or address.

6. Including the dispatch and receipt of the Web service within two different
transactional contexts so that the end-to-end delivery of data can be fully
transactional.

The WS-ReliableMessaging specification sets out to address requirements one
and three. The WS-ReliableMessaging workshops look at the composition of
Web services to tackle requirements one to five by testing interoperability of
solutions.

186 WebSphere and .Net Interoperability Using Web Services

Step 1. Transfer responsibility for delivery to the infrastructure

Figure 8-20 WS-ReliableMessaging endpoints

The reliable messaging model introduces a reliable messaging source and
destination endpoint. The application requester and provider use the guarantee
that a message sent to the reliable messaging source will be delivered to the
destination endpoint. The responsibility for managing the exchange is taken on
by the reliable messaging nodes and not by the application requester and
provider.

Step 2. Load balancing
One of the characteristics of the WS-ReliableMessaging protocol is that it sets up
a session between the source and destination endpoints. In a load balancing
environment the destination endpoint node that receives the createSequence
request may want to pass the request onto a different machine which will then
handle the rest of the session. An affinity is created between the source and
destination endpoint that must be respected by routing subsequent interactions
within the protocol to the same destination endpoint.

Figure 8-21 Using WS-Addressing to transfer WS-ReliableMessaging endpoints

 Chapter 8. Web service specifications 187

The affinity management needs to have the same persistence qualities as the
messages that are being transferred - that is, survive session, machine and
storage failure. WS-ReliableMessaging can be combined with WS-Addressing to
generate and pass endpoint address information inside the SOAP envelope with
the same quality of service as the message itself.

The load-balancing node selects a new destination endpoint on the
createSequence interaction, and inserts the address of the endpoint in a
WS-Addressing header in the SOAP message. Interactions between sender and
receive pass this address backwards and forwards to route subsequent
messages to the right destination endpoint node.

8.8 SOAP/JMS and SOAP/MQ
WS-ReliableMessaging is still undergoing development and evaluation. There
are already Web services applications in production that depend on a reliable
SOAP transport. They are using SOAP over WebSphere MQSeries, or over JMS
implemented either by WebSphere MQSeries or other messaging providers.
There is a redbook, WebSphere MQ Solutions in a Microsoft .NET Environment,
SG24-7012 that demonstrates how to configure an WebSphere MQSeries
transport and SOAP handler for a WebSphere Application Server, Microsoft .Net
and standalone WebSphere MQSeries environment.

The WebSphere MQSeries SOAP support is currently delivered as a Supportpac
available from:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.h
tml

The overall architecture is shown in Figure 8-22 on page 189. The
implementation uses the standard SOAP engine in the environments in which it
operates, exploiting the pluggability of SOAP engines.

188 WebSphere and .Net Interoperability Using Web Services

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.html

Figure 8-22 Overview of WebSphere MQSeries transport for SOAP

The solution is fully interoperable: SOAP messages can be flowed between
WebSphere Application Server and Microsoft .Net using WebSphere MQSeries.

8.8.1 Interoperability of SOAP/JMS and SOAP/MQ
WebSphere MQSeries has already solved the problem of providing a robust
message transport between diverse platforms. By using a single vendor to
supply the SOAP bindings to the messaging layer at both the client and server
one can build an interoperable, robust SOAP solution.

A word of caution, however. This is interoperability between platforms, not
between vendors. If the focus is on creating a Web service that can be published
and deployed just like any other, but with a robust transport option, then we do
run into an interoperability problem. Today, there is no standard way to define a
SOAP/JMS or SOAP/MQ binding, or map the resulting WSDL to a SOAP
envelope implemented as a message. Both ends of the Web service have to use
the same vendor to map the SOAP message to the SOAP stack at either end as
well as using the same messaging transport. With the ubiquity of WebSphere
MQSeries and the possibility of using JMS with an alternative messaging
provider the use of a common messaging transport is generally acceptable.
However the requirement to use the same vendor to map the Web services stack
is an inhibitor to deploying SOAP/JMS or SOAP/MQ outside the enterprise to
connect business partners - such as the Claims Assessors in our scenario.

The solution is to bind SOAP messages to messaging providers in a common
format. That way the requester and provider can be developed independently,

 Chapter 8. Web service specifications 189

and only when the solution is deployed does a decision need to be made on
which common message provider to employ. The question is how to define a
message mapping common to different proprietary messaging providers.

Figure 8-23 shows the problem trying to get WebSphere Application Server and
another SOAP server to interoperate using SOAP/JMS. Without a common
SOAP binding, the WebSphere Studio Application Developer and “A. Tool” are
going to implement the SOAP binding differently. As a result the solution doesn’t
interoperate.

Figure 8-23 SOAP/JMS Interoperability problem

The problem is currently being studied by a number of customers and vendors.
Solving the problem for SOAP over JMS is one way forward. Rather than
defining the binding of SOAP to proprietary message formats, the SOAP/JMS
binding would define the mapping of SOAP to the JMS API. The implementation
of the SOAP/JMS layer would then be independent of the JMS transport
provider.

190 WebSphere and .Net Interoperability Using Web Services

Chapter 9. Web services in Microsoft
.Net and WebSphere

In this chapter, we describe the architecture and implementation of Web services
in Microsoft .Net and WebSphere 5.1.2 Java 2 Enterprise Edition environments.
In a separate section at the end of the chapter, we look at the implementation of
secure Web services in Microsoft .Net and WebSphere Application Server.

This chapter is a brief summary. Both IBM and Microsoft have written books
comparing J2EE and .Net. They are both available online:

� IBM Redbook: WebSphere and Microsoft .Net Coexistence, SG24-7027,
found at:

http://publib-b.boulder.ibm.com/abstracts/sg247027.html?Open

� Microsoft, Patterns and Practices series, Application Interoperability Microsoft
.Net and J2EE, found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html
/jdni.asp

9

© Copyright IBM Corp. 2005. All rights reserved. 191

http://publib-b.boulder.ibm.com/abstracts/sg247027.html?Open
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/jdni.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/jdni.asp

9.1 Microsoft .Net architecture
Web service in Microsoft .Net uses the Microsoft Distributed Internet Applications
(DNA) design patterns and architecture. This DNA architecture partitions a Web
service application into three different layers, Presentation, Business Logic and
Data layers. Each layer exposes its interface to the next layer such that they are
loosely coupled with one another.

Figure 9-1 DNA three-layer architecture of Web service application

Many different parts make up the DNA architecture. The Windows operating
system, COM+ components, Internet Information Services, Active Server Pages,
and SQL Servers can be used in combination to implement a Microsoft .Net Web
service application. The Internet Information Services is a Web server and
application server that supports hosting of dynamic Web applications. It performs
functions similar to both WebSphere Application Server and Apache Web Server.
Active Server Pages are HTML pages with embedded Visual Basic scripts and
they are similar to Java Server Page (JSP) with its embedded tags in the HTML
pages. COM+ Components can be written in different languages such as Visual
Basic or Visual C++ and they provide business logic components for a Web
service application. Active Data Objects (ADO) is a set of COM objects used for
accessing relational databases. SQL Server provides the Relational Data Base
Management System including storage and management of data.

Microsoft built the Microsoft .Net framework based on the DNA architecture and
its Windows operating system with enhancements to include support of different
new features. Microsoft .Net encapsulates the Windows operating system and its
quality of service mechanisms using industry specifications such as WS-I Profile
1.0 and others involved in Web services. It also provides a runtime environment
for application software with services like garbage collection, exception
management, transaction management and namespace support. There is a rich
framework of useful classes to develop robust enterprise applications.

192 WebSphere and .Net Interoperability Using Web Services

As shown in Figure 9-2, the way Microsoft .Net provides these values is through
implementation of a Common Language Runtime and the Microsoft .Net
framework on top of COM+ and the Windows operating system. The purpose of
the Common Language Runtime is to provide language independence and
execution code management. It is similar to a JVM. It has the capability of

� JIT compilation of Microsoft Intermediate Language (MSIL) to native code
� Support of multiple languages (Visual Basic .Net, C#, Managed C++, JScript,

J#, Perl, Eiffel, Python, Pascal, FORTRAN)
� Thread, exception and memory management
� .Net Remoting
� Garbage collection
� Security, including code signing and using “Strong Names” to overcome the

problem of DLL conflicts where different programs use different versions of
the same DLL. Multiple versions of the same DLL can be loaded at the same
time.

� Runtime type checking supporting cross language type checking
� Debugging - bring up a debug dialog in a runtime system when code is not

being run in a development debugging environment.

The .Net framework provides access to the underlying qualify of service,
consuming Web services, .Net Remoting and other features.

Figure 9-2 Microsoft .Net framework and runtime enhances the DNA components

Microsoft has also enhanced the supporting DNA components. Microsoft has
released Windows Server 2003 and upgraded COM+ from v1.0 to v1.5 and calls

 Chapter 9. Web services in Microsoft .Net and WebSphere 193

it Enterprise Service under Microsoft .Net. It has enhanced ADO and named it
ADO.NET. It has upgraded IIS from V5.0 to V6.0. Microsoft has built Microsoft
.Net from scratch to take full advantage of the Windows operating system.

Figure 9-3 The building block of Microsoft .Net

Microsoft .Net is very tightly coupled with the Windows operating system, while
allowing different languages to be used to develop the Web service in its
Microsoft .Net Framework. We can use Visual Basic .NET, Visual C#, J#. and
other languages to write Microsoft .Net applications. Microsoft .Net makes use of
the underlying runtime and Quality of Service mechanisms such as COM+ and
provides the implementation of standard interfaces such as Web-based access
via HTTP, XML and Web services in the Windows platform.

9.1.1 Microsoft .Net Web service application architecture
The Microsoft .Net Web service application architecture is a standard three tier
model with presentation, business and data layers.

Presentation layer
The presentation layer interacts with the user. It consists of the visual forms that
are created in Active Server Page .NET (ASP.NET) with embedded tags and
client-side scripting such as VBScript or JScript. In Microsoft .Net, this Web form
contains a code-behind page with extension of .aspx.cs for C# and .aspx.vb for
Visual Basic .NET. The forms are populated with drag-and-drop widgets such as
buttons, text and labels from the toolbox of the Microsoft Visual Studio .Net 2003.
The Web form in ASP.NET has the extension of .aspx.

194 WebSphere and .Net Interoperability Using Web Services

Figure 9-4 Presentation Layer with forms created in ASP.NET and scripts

Business layer
The business layer provides services to the presentation layer. These services
wrap business objects running under the Microsoft .Net Common language
runtime. They can also wrap COM+ components in the Windows operating
system without the support of the Microsoft .Net Common Language Runtime.
These objects can be created using Visual Basic Microsoft .Net, C# or other
languages. They are classes containing methods and variables. If they are
managed code1 they also have attributes to extend their functionality to use the
services provided by the Microsoft .Net Framework. If the classes are not
compiled into managed code, they make use of the services and libraries
provided by the Windows operating system. Classes written in C# have the file
extension .cs. If they are written in Visual Basic Microsoft .Net, they have the file
extension of .vb.

When business objects reside in different machines, Microsoft .Net uses .NET
Remoting to facilitate the invocation between them. .NET Remoting is similar to
Java 2 Enterprise Edition Remote Method Invocation (RMI/IIOP) for invoking
objects in different machines. .NET Remoting supports the invocation of remote
objects via SOAP or of a proprietary binary over TCP/IP. Objects within the
business layer can work with each other in various layers of abstraction, such as
providing a service via an XML Web service interface.

1 What is managed code? Managed code is written in one of many high level languages and is
compiled into IL (intermediate language). It executes in a managed execution environment that
ensures type safety, array bound and index checking, exception handling, and garbage collection
very similar to Java running in a JVM. See
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m/directx/what
ismanagedcode.asp

 Chapter 9. Web services in Microsoft .Net and WebSphere 195

Figure 9-5 Business Layer consists of COM+ or Microsoft .Net objects

Data layer
The data layer abstracts data access to the business layer by providing data
access services to the business layer. The data access service can include
access to databases or other resources such as queues or resource adapters to
legacy applications. The data layer can use Microsoft SQL Server as the
database management system or other database through ODBC data sources or
using the Microsoft JDBC driver. Microsoft .Net uses ADO.NET to access the
data in the database. In ADO.NET, we have connection, dataset, data adapter,
which allows disconnected access to the database.

Figure 9-6 Data layer

9.1.2 Developing software using Microsoft Visual Studio .Net 2003
Microsoft Visual Studio .Net 2003 organizes development work in projects. The
opening panel gives us a choice of different types of project and different types of
language types to work on, such as building class library or an ASP.NET Web
service using C#:

196 WebSphere and .Net Interoperability Using Web Services

Figure 9-7 Selecting a language and project type with Microsoft Visual Studio .Net 20032

Developing an ASP.NET Web service
Having decided to build a ASP.NET Web service project type, Microsoft Visual
Studio .Net 2003 prompts you by bringing up the component designer,

Figure 9-8 Component design in Microsoft Visual Studio .Net 2003

This creates a default Web service entry point (service1.asmx) and a form (see
Figure 9-8) to add components, or to switch to the code view to start writing code
- typically kept in a .asmx.cs “code behind” file.

In Microsoft Visual Studio .Net 2003 the development and production
environments are the same. This is different to WebSphere Studio Application
Developer Rather which embeds test servers in the development environment.
As a consequence, Internet Information Service must be running to develop a

2 This and other screenshots from Microsoft products are reprinted by permission from Microsoft
Corporation

 Chapter 9. Web services in Microsoft .Net and WebSphere 197

Web service project because the visual studio wizard also creates and deploys
the project on the Web server at the same time as it is created in Microsoft Visual
Studio .Net 2003.

As with the rest of the .Net framework the development of a new Web service is
highly integrated with the rest of the Windows operating system and relies upon
setting up the Windows to support separate development, testing and production
environments - for example by using access control to restrict those who can
modify the development, test and production environments.

Web services Service Interface pattern
The pattern of integration used by Microsoft Visual Studio .Net 2003 to build
interoperable Web services is the Web services Service Interface pattern, found
at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/htm
l/DesServiceInterface.asp

This is like a Patterns for e-business [P4eb] Runtime pattern, and we show it
using the [P4eb] notation below.

Figure 9-9 Service Interface pattern

Microsoft Visual Studio .Net 2003 provides a code template to implement the
Service Interface. Each method in the class that is exposed as a Web service
should have a Public declaration and be marked with the attribute [WebMethod].

ASP.NET handles the creation and parsing of SOAP Web service requests and
responses.

Microsoft Visual Studio .Net 2003 Web services client
Just as Microsoft Visual Studio .Net 2003 provides a project template for a Web
services service, it also has a project template for a Web services client.

198 WebSphere and .Net Interoperability Using Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp

Figure 9-10 Creating a Web services client using Microsoft Visual Studio .Net 2003

The template generates a Web service proxy class and uses .NET Framework
for all the Service Gateway coding.

The next step is to add a Web reference to the project. Add Web reference... is
a right-mouse click in the solution explorer and brings up a Web service browser:

Figure 9-11 Microsoft Visual Studio .Net 2003 Web services browser

Once a Web service is selected Microsoft Visual Studio .Net 2003 automatically
generates the client Web service proxy class. This class should not be
customized in case the Web reference is updated which will cause a new proxy
class to be generated overwriting the old one.

Alternatively if the Web service is not accessible at the time of development
Microsoft Visual Studio .Net 2003 provides a tool, WSDL.exe to create the proxy
class from WSDL. This has the advantage you can customize the proxy class as
its management is under manual control.

The proxy class namespace must be added to the client application, and the
client code needs to create an instance of the proxy class and then invokes the
appropriate methods in the proxy class.

 Chapter 9. Web services in Microsoft .Net and WebSphere 199

By default the URL of the Web service is statically coded into the client proxy. By
changing the URL behavior of the Web reference to Dynamic the URL is read
from the application’s configuration file.

9.1.3 Microsoft secure Web services implementation
In this section we will examine the Microsoft .Net method of building secure Web
services and what standards are implemented by Microsoft Web Service
Enhancements v2.0.

Building secure Microsoft .Net Web services
When we use Microsoft .Net to write a secure Web service, all of the security
configuration is done in the code itself. We do not have the split between code
and configuration files that exists when writing a Java 2 Enterprise Edition Web
service. Let’s have a look at an example Web service client, written in Visual
Basic .NET:

Example 9-1 A Visual Basic .NET Web service client sending an encrypted message

Dim WebService As New XYZElectronics.placeOrder
Dim encryptionCertificate As X509Certificate

Dim store As X509CertificateStore
store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore)
store.OpenRead()

For Each cert As X509Certificate In store.Certificates
If (cert.GetName.IndexOf("XYZElectronics") > -1) Then

encryptionCertificate = cert
End If

Next cert

Dim encryptionSecurityToken As New X509SecurityToken(encryptionCertificate)
Dim encryptedData As New EncryptedData(encryptionSecurityToken)
WebService.RequestSoapContext.Security.Elements.Add(encryptedData)

WebService.placeOrder(Input.Text)

This client begins by creating an instance of the XYZElectronics.placeOrder
class, which has been generated at development time from the WSDL of the
Web service. The client then searches through the certificate store on the
machine it is running on and locates the public key certificate of XYZElectronics.
It uses this to create an X509SecurityToken, and from this, an EncryptedData
object. It then adds this EncryptedData object to the security elements in the

200 WebSphere and .Net Interoperability Using Web Services

outgoing SOAP message. (A message sent from a client to a Web service is
often called a request, the one returned is a response.)

Microsoft Web Service Enhancements V2.0
Microsoft Web Service Enhancements v2.0 implements WS-Security 2004,
WS-Policy, WS-SecurityPolicy, WS-Trust and WS-SecureConversation. It was
released before the WS-I Security Profile was drafted, so it does not implement
this. However, because it implements WS-Security 2004, we should expect
reasonable interoperability between secure Web services built with it and Java
Web services built with Rational Application Developer v6.0.

For further information see the article WS-Security Drilldown in Web services
Enhancements 2.0 by Don Smith:

http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/e
n-us/dnwse/html/wssecdrill.asp

9.2 WebSphere Java 2 Enterprise Edition architecture

Figure 9-12 Java 2 Enterprise Edition containers, components and services

In the Java 2 Enterprise Edition programming model, there are application client
and applet containers, and the Web and Enterprise JavaBean (EJB) containers.

The application clients have access to the services of the Java 2 Enterprise
Edition application client container. These services include Java Messaging
Service (JMS), Java Authentication and Authorization Service (JAAS), Java for

 Chapter 9. Web services in Microsoft .Net and WebSphere 201

http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwse/html/wssecdrill.asp

XML Parsing (JAXP), Java Naming and Directory Interface (JNDI), Java Remote
Method Invocation running over Internet Inter-Orb Protocol (RMI/IIOP) and Java
Database Connectivity (JDBC).

Unlike the Java application clients, applets, typically running in a browser, have
restricted access to system resources and are prohibited from reading and
writing files, and making network connections except to the originating host.

The Web container components include Java Server Pages (JSP) and Java
servlets. JSP pages are used to construct dynamic Web pages and Java servlets
are implement control logic. JSPs implement the view and servlets the controller
in the Model-View-Controller pattern of a Java 2 Enterprise Edition
implementation.

The model component of the pattern is implemented by Enterprise JavaBeans
running in the EJB container of the Java 2 Enterprise Edition application server.
There are three types of EJBs - Session, Entity and Message driven beans
(MDB).

Session beans can be stateless or stateful. In most design patterns stateless
session beans are used to implement stateless objects and entity beans to
implement stateful objects. Entity bean state (or persistence) can either be
container managed (CMP) or bean managed (BMP). Persistence is normally
implemented using a relational database connected using data sources which
manage pools of JDBC connections.

Message Driven Beans use JMS or IBM WebSphere MQSeries to implement
asynchronous patterns of interaction. Both point-to-point and publish-subscribe
styles of messaging are supported, as well as multiple degrees of message
persistence and performance.

The Java 2 Enterprise Edition defines the standardized external protocols used
for process and application communication and integration. RMI/IIOP is used for
synchronous connection between beans, and JMS for asynchronous connection.
Java Connector Architecture (JCA) defines how non Java 2 Enterprise Edition
applications connect to the application server. In JCA 2.0, supported in Java 2
Enterprise Edition 1.4 the connection can be initiated in either direction, and
asynchronous connection, using JMS, is also supported. So for example, in a
typical Integration pattern an Enterprise Information System (EIS) such as SAP
can trigger a one-way message from SAP to the Java 2 Enterprise Edition server
in response to a modification of an SAP business object. The application server
can then coordinate updating other EISs that need to be synchronized with SAP.

202 WebSphere and .Net Interoperability Using Web Services

Java 2 Enterprise Edition embeds the Java 2 Standard Edition Java Virtual
Machine runtime environment in which all the Java code runs.

Figure 9-13 The building block of WebSphere Application Server

Java 2 Enterprise Edition Web service application development is restricted to
the use of Java language, but allows development in different operating systems
such as Unix, Windows, or IBM Z/OS.

WebSphere Application Server is the implementation of the Java 2 Enterprise
Edition specification. It also includes IBM’s extension to provide security and
other binding services. There are a number of different versions of WebSphere
Application Server providing different levels of capability that build upon one
another.

Table 9-1 Capabilities of different versions of WebSphere Application Server

Server key Capabilities

WebSphere Application Server
Express

Dynamic Web pages, Web services,

WebSphere Application Server Full Java 2 Enterprise Edition compliance and
Web services support

WebSphere Application Server
Network Deployment

Support for managing clusters (cells) of
application servers for scalability and reliability.
Support for publishing Web services using the
Web service gateway and UDDI server.

WebSphere Application Server
Extended Deployment

Support for administering multiple WebSphere
Application Server ND cells

 Chapter 9. Web services in Microsoft .Net and WebSphere 203

WebSphere

9.2.1 Java 2 Enterprise Edition Web service architecture
JSR 101 defines the Java API for XML-based Remote Procedure Call
(JAX-RPC) style programming model. It mandates both client and server side
requirements.

JSR 101 formalizes the procedure for invoking Web services in an RPC-like
manner in a Java programming environment. It is a required part of the J2EE 1.4
specification, but due to huge demand for this programming model, IBM also
provides it on the J2EE 1.3 platform. This support has been provided
out-of-the-box in WebSphere 5.0.2 and later.

JSR 101 provides for interoperability of the Web services Java API between
different Web service vendors’ development tools. As long as the
implementations of JSR 101 are compliant to the SOAP interoperability
specifications then clients and servers will interoperate with other Java and
non-Java platforms such as Microsoft .Net.

WebSphere Business
Integration Server Foundation

Provides additional business integration
capabilities and extensions to the Java 2
Enterprise Edition programming model that have
are not in the current finalized level of the Java 2
Enterprise Edition specification (currently 1.4).
For example BPEL4WS

Server key Capabilities

204 WebSphere and .Net Interoperability Using Web Services

Figure 9-14 JAX-RPC clients interact with SOAP-RPC Compliant server

JSR 109 standardizes the process of deploying a Web service in a Java 2
Enterprise Edition platform to achieve interoperability and portability across
different Java 2 Enterprise Edition compliant platforms. JSR 109 is only defined
for the implementation of a stateless session EJB in an EJB container and Java
class in a Web container. The specifications detail the programming model for
Java 2 Enterprise Edition components with Web services, the assembly of the
components with Web services and the deployment of these components as
Web services components.

Java 2 Enterprise Edition Version 1.4 mandates JSR 101 Java API for XML-RPC
(JAX-RPC) and conformity to the JSR 109 Web services implementation
specification.

For more details about JSR 101 and JSR 109 refer to WebSphere Version 5.1
Application Developer 5.1.1 Web Services Handbook, SG24-6891.

 Chapter 9. Web services in Microsoft .Net and WebSphere 205

9.2.2 Developing J2EE applications using WebSphere Studio
Application Developer

WebSphere Studio Application Developer 5.1.2 contains built-in Java 2
Enterprise Edition Version 1.3, but allows the flexibility to use Java 2 Enterprise
Edition Version 1.4. WebSphere Application Server 5.1.1 conforms to Java 2
Enterprise Edition 1.3, and also implements parts of Java 2 Enterprise Edition
1.4 including JSR 101 and 109. Full 1.4 support is provided by WebSphere
Application Server 6.0.

WebSphere Studio Application Developer 5.1.2 has different perspectives that
ease implementation of the different Java 2 Enterprise Edition Web service
layers. Figure 9-15 shows using the Java 2 Enterprise Edition perspective in
WebSphere Studio Application Developer to edit different layers in the
application.

Figure 9-15 J2EE Logical Application layers mapped to WebSphere Studio Application
Developer

Client
We can implement a simple Java application client or applet client to access the
presentation layer. We use the WebSphere Studio Application Developer visual
editor to create the client application, which can reside in the same as or different
machine from the server.

J2EE Perspective

206 WebSphere and .Net Interoperability Using Web Services

Presentation layer
We usually use the Web perspective with the Java 2 Enterprise Edition
perspective to develop Dynamic Web pages. We can use WebSphere Studio
Application Developer Visual Editor to design text boxes, buttons and list boxes,
creating the JSP and HTML pages. We can easily convert the EJB into Web
service using the Web service wizard. WebSphere Studio Application Developer
also provides the Universal Test Client and built-in UDDI registry for publishing
Web service and testing the Web service application.

We use the web.xml file in Web-Content to configure the Web pages. The layer is
packaged in the Web Application Resource (.war) file for distribution.
WebSphere Studio Application Developer automatically wraps the .war file with
the default Enterprise Application Resource (.ear) file. WebSphere Studio
Application Developer also includes the Apache Struts framework for developing
robust, loosely-coupled presentation layer by using the Model-View-Controller
pattern, where the servlets are usually used as the controller or dispatcher.

Business layer
We use the Java 2 Enterprise Edition perspective in WebSphere Studio
Application Developer 5.1.2 to assist in the implementation of the business layer.
We use Session beans as the business facade to group different operations into
a single interface and we use the entity beans to map class attributes to the data
fields in the database. We implement asynchronous Web service using the JMS
based Message driven beans with the support of either WebSphere MQSeries,
the embedded WebSphere Application Server messaging or a third party
messaging provider.

Integration layer
In the Integration Layer, WebSphere Studio Application Developer can be used
to bridge to legacy resources such as CICS, IMS™ or Batch systems. The
integration layer is where Java 2 Enterprise Edition services and other
integration middleware such as message queueing software and enterprise
information system connectors reside.

Resource/Data layer
WebSphere Studio Application Developer 5.1.2 has a data perspective which is
used to automate development of the data layer. In WebSphere Studio
Application Developer. We can connect to databases, develop schemes and
develop SQL statements and stored procedures to access the database.

This layer includes the DB2® database, CICS, SAP, JDEdwards, and other
resources which a distributed application may connect to them.

 Chapter 9. Web services in Microsoft .Net and WebSphere 207

Developing a J2EE Web service from an EJB
WebSphere Studio Application Developer has wizards to build Web services
from different types of applications. In 12.1.5, “Create a Web service from
Enterprise JavaBeans” on page 262 we work through building a Web service
from an EJB. The steps required are:

1. Select the level of WS-I compliance conformance required

2. Select the New Web service wizard.

3. Select the different attributes of the Web service that are required and how
the Web service is to be tested

4. Select the EJB project and the EJB EAR file that contains the EJBs to be
converted into Web services, and the “Router” project that will contain the
resulting Web service.

5. Select the runtime environment it is to be targeted at

6. Select the EJBs to be included in the Web service.

7. Select the methods to be included in the Web service

The wizard will generate the Web service, issue any appropriate warnings about
WS-I compliance, generate a test client, deploy the EAR file to the test server,
and start the test server. There are no manual steps involved for EJBs using
simple datatypes. The level of WS-I compliance is reported if requested.

Building a J2SE Web service client
Once the WSDL file for the Web service has been imported the method to build a
standard Java client to call a Web service works regardless of where the WSDL
file was obtained from. The steps are laid out in detail in 12.3, “Building the Web
services clients” on page 293. In brief the steps are:

1. Create a new Java project

2. Import the WSDL file

3. Test the client using the Web services explorer

4. Select Java proxy as client proxy type and generate the proxy classes

5. Test the client proxy by launching the Run Java Application - the generated
test code will only handle simple data types.

9.2.3 IBM secure Web services implementation
In this section, we begin by examining what different ways of building Web
services we have available when using IBM products and how this affects their
security configuration. We then go on to look at exactly what security standards
are implemented in versions 5.1 and 6 of WebSphere Application Server.

208 WebSphere and .Net Interoperability Using Web Services

Building secure Java Web services and clients
We first look at building a secure service provider, and then how to build a secure
service requester.

Web services
A Java Web service, like any server application, runs in a Java 2 Enterprise
Edition container. When we configure the security settings, we use the
webservices.xml file. Thus we have a split between the Java code that is
implementing the Web service, and the configuration files that specify the
security settings. The Java code has no mention of security. We do not need to
manually change this file, because WebSphere Studio Application Developer
provides a graphical editor. The figure below shows us using the
webservices.xml file to specify that incoming messages must be encrypted.

Figure 9-16 Using the webservices.xml file to specify that incoming messages must be
encrypted

Web service clients
When writing Java Web service clients, we have a number of options to choose
from, including:

� J2SE ServiceLocator client - this is the simplest type of client. It is created
from code stubs created ahead of time and has the endpoint of the service
hard coded into it. It is very easy to use, but is IBM specific.

 Chapter 9. Web services in Microsoft .Net and WebSphere 209

� JAX-RPC ServiceFactory. This is the JSR 101 standard for J2SE Web service
clients. There are three variants:

a. Static stub. A Service object is created at development time, with the
service URL hard coded into it.

b. Dynamic proxy. The location of the Web service WSDL must be known at
development time, but the proxy object is created dynamically at run time.
This has the advantage that if the service definition has changed since the
last use of the client, the appropriate proxy will be generated from the
updated WSDL.

c. Dynamic Invocation Interface (DII). In this implementation, not only is the
proxy object created dynamically at run time, but we do not even need to
know the WSDL URL at development time. Rather, we can, for example,
perform a UDDI lookup to locate the service information. This method is
the most flexible, but also the most complex.

� Java 2 Enterprise Edition Container managed clients, as defined by JSR 109.
This standard builds upon JSR 101. Hence we have the same client types
available, but the clients are packaged into Enterprise Archive files (EARs),
which also contain Java 2 Enterprise Edition deployment descriptors, such as
the webservicesclient.xml file. Several types of Java 2 Enterprise Edition
clients are possible:

a. A Java class, which runs as a Java Bean in the Web container.
b. An Enterprise JavaBean (EJB), running in the EJB container.
c. An Application Client, running in the Application Client container.

So, if we wish to create secure clients, we must use Java 2 Enterprise Edition
container management and configure their security using the
webservicesclient.xml file. This file is designed to be very similar to the
webservices.xml file:

210 WebSphere and .Net Interoperability Using Web Services

Figure 9-17 We configure client security in a similar way to Web service security

For a more detailed discussion of WebSphere client types, see Invoking Web
services with Java clients by Bertrand Portier:

http://www-106.ibm.com/developerworks/webservices/library/ws-javaclient

For general information about Web services security configuration in
WebSphere, see the WebSphere Studio Application Developer infocenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websp
here.nd.doc/info/ae/ae/rwbs_index.html

WebSphere Application Server V5.1
WebSphere Application Serverv5.1 and WebSphere Studio Application
Developer v5.1 were released before the WS-Security 2004 specification was
agreed. As such, their security implementation is based on the WS-Security
draft. Although the original proposal was made in 2002, by 2003, OASIS was
working on the draft. This means that the security namespaces have the value:

xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext"

 Chapter 9. Web services in Microsoft .Net and WebSphere 211

http://www-106.ibm.com/developerworks/webservices/library/ws-javaclient
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rwbs_index.html

As opposed to the namespace for WS-Security 2004:

xmlns:wsse=”http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-s
ecext-1.0.xsd”

Several other namespaces are different. Of course, some functionality is also
different between the two standards. Because of this, we should not expect
interoperability of secure Web services with Microsoft Web services
Enhancements v 2.0, since it implements the WS-Security 2004 standard. This
will not affect the interoperability of Web services that do not use security.

WebSphere Application Server V6.0
WebSphere Application Server v6.0 and Rational Application Developer v6.0
implement WS-Security 2004 and the draft WS-I Security Profile. Thus secure
Web services should interoperate with Microsoft Web Service Enhancements
2.0. We hope to publish a revision this redbook during 2005 to demonstrate how
to make secure Web services interoperate using the to-be finalized WS-I security
profile.

9.2.4 Summary
The requester sollicits a separate response, usually implemented as a second
synchronous communication originating from the responder. The requester must
have some means of correlating the callback with the original request by passing
some token or address in the original request which is returned in the callback.

Security
We have seen that when creating secure Web services using WebSphere, we
use the webservices.xml and webservicesclient.xml files. Security
configuration is completely separate to the business logic of the Web services.
Since the files are Java 2 Enterprise Edition deployment descriptors, our Web
services clients must be container managed Java 2 Enterprise Edition clients,
not J2SE clients.

When using Microsoft .Net, security settings are done in the code of the Web
service or client. For example, when coding a client, we create an object that
represents the Web service, by using the code stubs generated from a Web
reference. Then we configure security for the request and response messages
by calling methods on the RequestSoapContext and ResponseSoapContext
members of this object.

Development tools
WebSphere Studio Application Developer provides some useful wizards and test
tools to generate Web services. In particular the automatic WS-I compliance tool

212 WebSphere and .Net Interoperability Using Web Services

in WebSphere Studio Application Developer is a feature Microsoft Visual Studio
.Net 2003 is lacking.

Testing and deployment
The other main difference in the experience in using the tools is that the
WebSphere Studio Application Developer packages a test environment into the
tooling, and has very explicit deployment steps to publish a new application into
a production environment, whereas with Microsoft .Net the familiar facilities of
the Windows platform are used to manage the development, test and production
environment.

Are these differences significant? Probably not greatly - they reflect that
Microsoft Visual Studio .Net 2003 is supports development on a single platform,
whereas WebSphere Studio Application Developer supports multiple platforms.
The difference in approach does not have much baring on the number of tasks
that need to be performed for a large enterprise to deploy a Web service into a
production environment. The fact that Microsoft Visual Studio .Net 2003 doesn’t
require an additional deploy step doesn’t mean that compared with WebSphere,
no one needs to be employed to plan and manage deployment.

For successful management of development, testing and deployment on both
platforms, enterprises need to employ skilled professionals who understand their
enterprise, their IT infrastructure, their solutions and the tools being used. Both a
complex Microsoft .Net environment and Java 2 Enterprise Edition present
equivalent challenges.

The only meaningful comparison between the platforms is the one you make as
to how well Microsoft .Net or WebSphere match the needs of your enterprise
based on the solutions you aim to implement. Web services is only part of the
story.

 Chapter 9. Web services in Microsoft .Net and WebSphere 213

214 WebSphere and .Net Interoperability Using Web Services

Chapter 10. Deploying Web services

This chapter describes the Web service deployment models and runtime
architecture for WebSphere and Microsoft .Net platforms.

We cover using a UDDI registry and configuring Web services runtime
architectures on Microsoft .Net and WebSphere. It is beyond the scope of this
redbook to look at high availability, high performance and highly secure Web
sites. Our goal is to provide an introduction to the basic runtime architecture
recommended by IBM and Microsoft in their publications.

10

© Copyright IBM Corp. 2005. All rights reserved. 215

10.1 Overview
As described in the business scenarios, integration between WebSphere and
Microsoft .Net platforms can be achieved in an intranet (corporate) or Internet
(B2B or B2C) environment.

In the first case, all service consumers belong to the same corporation; usually, in
such environments, proxying, firewalling or security protections are advisable,
even if they are not considered mandatory.

In the second case, Web services consumers are outside corporate boundaries
and the same Web service represents the means by which two or more
companies do business together. In such environments, service providers must
provide security and accomplish more non-functional requirements; the most
important are listed below:

� Establish access policies to prevent unauthorized access

� Mask intranet Web service endpoint

� Provide a reliable service in terms of high service availability and low service
fault

� Assure the provisioning of interoperable service discovering, binding and
invoking mechanisms

The Web services deployment architecture assumes a great importance and
must be suitably planned and executed.

10.1.1 Web services publishing
The reference architectures we show later in this chapter use an internal UDDI
service to publish Web services on the Internet. This is not the only choice we
have: companies publishing Web services on the Internet may take one of the
following three actions:

� Do not publish the Web service. In this case, only static binding can be used
from Web service clients to invoke the service. This also means that the
service provider must provide the WSDL file directly to the service consumer.

� Publish the Web service in an internal UDDI registry server. An internal UDDI
server is typically a product implementing UDDI specifications and can be
exposed on the Internet by means of the company Internet Web server.

� Publish the Web service in one of the public UDDI business registries (UBR)
listed in the UDDI OASIS Web site, such as the one provided by IBM at
http://uddi.ibm.com or Microsoft at http://uddi.microsoft.com. A UBR is a
group of Web-based UDDI nodes, which together form a UDDI registry. All

216 WebSphere and .Net Interoperability Using Web Services

http://uddi.ibm.com
http://uddi.microsoft.com

UDDI nodes will replicate each other daily, so that all registries remain
current.

The choice to use an internal or an external UDDI server is based on how much
we want to make the service public. Most times, just as in our External Claim
Assessors scenario, Web services are used in B2B applications and only
accessed by a restricted team of corporates having special agreements. In this
case, the internal UDDI registry or simply the direct provisioning of the WSDL file
is usually preferred.

From an interoperability point of view, the key difference between the use of a
public or private UDDI registry is that, in the case of public UDDI Business
Registries, both IBM and Microsoft have their own registry which are kept
synchronized with each other; this means that at any time, Microsoft Web
services clients can locate services in the Microsoft UDDI registry while IBM Web
services clients can locate services in the IBM UDDI registry. There is no need to
check interoperability between the IBM UDDI client and the Microsoft UDDI
server, or between the Microsoft UDDI client and the IBM UDDI server.

Interoperability problems may arise when private UDDI registries are used; in
this case, we cannot assume to have both Microsoft and IBM platform providing
synchronized UDDI registries; only one of them would reasonably be
implemented. A client may be based on a different platform than the server and
we must be sure that client and server components implemented from different
vendors are interoperable.

10.2 WebSphere Web services deployment model
WebSphere platform provides a fully secure, scalable and reliable architecture
for publishing Web services; this architecture can address all requirements listed
in the previous section. Service deployment and related system network
architecture have been defined with the objective of building a full
Service-Oriented Architecture.

The main software components needed are the UDDI registry and the Web
Services Gateway. Both are product features implemented in WebSphere
Application Server Network Deployment. In the following sections, we first
describe the Web Services Gateway and UDDI Registry features and then
provide the overall deployment architecture.

10.2.1 Web Services Gateway
Web Services Gateway works in two directions. For services deployed inside the
enterprise, it is a reverse proxy server between an external Web service client

 Chapter 10. Deploying Web services 217

and the corresponding Web service provider. Web Services Gateway enables
clients from outside the corporate intranet to use Web services that are deployed
in the corporate intranet without directly connecting to them; the proxy
configuration is also supported to enable client from the corporate intranet to
consume services exposed on the Internet network.

In a WebSphere environment, a good base level of security can be reached with
a basic three-tier architecture where the only process running in the DMZ layer is
the HTTP server and the WebSphere plug-in. Using EJB to implement Web
services, we decouple the Web layer form the integration layer. In fact, in this
case, no business code is contained in the included WAR file and the mapping
between the EJB and the corresponding Web Service is obtained by means of
configuration files.

The Web Services Gateway provides a boundary layer with a complete set of
functions to publish, secure, decouple and adapt an intranet Web service to an
external Internet environment. Using the Web Services Gateway administration
tool, we can:

� Register Web services to make:

– Internal Web services available outside the intranet
– External Web services available inside the intranet

When the service registration is performed, a new WSDL file is generated
from the original one provided with the Web service. This generated WSDL
file is similar to the original one except for the service endpoint. The original
endpoint is masked with the new one provided by the gateway. The
generated WSDL file is managed by the gateway and exposed outside the
internal network. External clients consume the internal service through the
Web service reverse proxy installed at the gateway.

� Modify Web service channel configuration

For example, a SOAP/JMS internal Web service can be registered on the
Internet as a SOAP/HTTP Web service; protocol conversion is implemented
on the gateway.

� Apply custom filters or JAX-RPC handlers before or after service execution

For example, filters can implement logging as an alternative to developing
custom logging functionality in each Web service implementation. This can be
useful when exporting existing code as a Web service and needing to add
some additional management capability.

Filters are still present in WebSphere V5.1, but their use is deprecated. All
new gateway installations should use JAX-RPC handlers rather than gateway
filters, for the following reasons:

218 WebSphere and .Net Interoperability Using Web Services

– JAX-RPC is part of the proposed Java 2 Platform, Enterprise Edition
(J2EE) 1.4, and JAX-RPC handlers are emerging as the standard
approach in Java for intercepting and filtering service messages.

– JAX-RPC handlers are already being widely implemented - and any
JAX-RPC handlers you write for use in other systems can also be
deployed to the gateway.

– JAX-RPC handlers are already accepted as the standard approach in
Java for managing message-level security as defined by the Web
Services Security (WS-Security) specification.

Another difference between filters and JAX-RPC handlers is that while filters
are applied at the level of the gateway service, JAX-RPC handlers are applied
to:

– The gateway service and the channel (for messages passing between the
service requester and the gateway).

– The target service and the target service port (for messages passing
between the gateway and the target service).

� Manage UDDI registries

UDDI publishing of the server is managed within the Web Services Gateway
administration.

� Manage security

The gateway can secure the communication between the service requester
and the gateway, and between the gateway and the target service. Security
can be applied at different levels from transport level security to message
level security:

– Web service security (WS-Security)
– Gateway-level authentication
– Operation-level authorization
– SSL protocol using HTTPS
– Proxy authentication

The interaction between a Web service client and the corresponding service
implementation registered on the gateway is shown in Figure 10-1 on page 220.

 Chapter 10. Deploying Web services 219

Figure 10-1 Web service consuming through the Web Services Gateway

Please refer to the IBM Redbook WebSphere Version 5.1 Application Developer
5.1.1Web Services Handbook, SG24-6891 for details about Web Services
Gateway administration.

10.2.2 IBM UDDI registry
The Universal Description, Discovery, and Integration (UDDI) registry provided
by the IBM WebSphere platform implements the UDDI specifications version 2.

UDDI is delivered with WebSphere Network Deployment. It can be installed both
in a node which is part of a deployment manager cell or in a separate,
standalone application server. The database manager supported to keep UDDI
registry information is DB/2 or Cloudscape™.

UDDI registry is a J2EE application and it is deployed as an EAR. So, any
performance or security considerations can be applied on it as on any other
J2EE application running on WebSphere.

10.2.3 Deployment architecture
The reference Web service deployment architecture in a WebSphere
environment is shown in Figure 10-2 on page 221. The nodes and applications
configuration we chose to represent the architecture form a general purpose
configuration; in fact, both the UDDI registry and Web Services Gateway could

Web Services
Gateway

220 WebSphere and .Net Interoperability Using Web Services

be installed in a standalone WebSphere Application Server not part of a
deployment manager cell, and there is no specific need to keep them in different
nodes.

The advantages of such a configuration are as follows:

� Network and protocol decoupling between service consumer and
service provider

Internal Web services are not directly exposed on the Internet; furthermore,
the gateway can change the protocol used by the internal Web service with
the HTTP protocol, which is more commonly used for Internet connections.

� Network protection of all externalized services, included the gateway
and the UDDI

Both firewalls can be configured to allow only incoming HTTP requests on
port 80 and HTTPS requests on port 443.

� A fully secure DMZ

No application code runs on the HTTP Server except the HTTP server itself
and the WebSphere Application Server plug-in.

� A centralized administration tool

The gateway is also used for UDDI registry publishing.

Figure 10-2 Web services deployment architecture in a WebSphere environment

In order to deploy a single Web service in the proposed environment, only the
following two deployment steps must be executed:

HTTP Server
WebSphere Plugin

WebSphere Deployment Manager Cell

DMZ Intranet

Database
Find Service

Application Server Node

Find service

Bind Service

Invoke Service

Bind Service

Invoke Service

FirewallFirewall

Web Service
Web Service

Web Service

UDDI Server Node

UDDI Registry

Web Services Gateway Node

Web Services
Gateway External

WSDL fileExternal
WSDL fileExternal

WSDL file

In
vo

ke
 S

er
vi

ce

Web Services
Client

 Chapter 10. Deploying Web services 221

1. Deploy Web service EAR file into the target application server.

2. Register the Web service on the Web Services Gateway with all required
options (protocol conversion, JAX-RPC handling, security, etc.) included in
the entry published to the UDDI registry.

The Web service consuming process is based on the following steps:

1. The client locates the service using the find service provided by the UDDI
registry. Because the UDDI is a J2EE application, client requests are
managed by the presentation layer provided with the UDDI registry, which is a
Web application exposed on the Internet through the WebSphere plug-in of
the HTTP server. The UDDI registry returns the found service, indicating as
the service endpoint the external one provided by the gateway.

2. The client performs the service binding asking the Gateway for the WSDL.
The gateway returns its own WSDL file.

3. The client sends the service invocation request to the Gateway, which routes
the invocation to the real internal Web service after applying all handlers and
protocol conversion, when needed. The response from the Web service is
then rerouted to the original client; also in this case, handlers and protocol
conversion are applied as needed.

10.3 Microsoft .Net Web service deployment model
Configuration of Microsoft .Net XML Web services follows the same paradigm
used by all ASP.NET Web applications, so the same concepts of deploying,
configuring, scaling, remoting and securing ASP.NET Web Applications can also
be applied for Web services.

The main software components are the Microsoft .Net platform itself and the
UDDI registry. In the following sections we first describe the UDDI Registry
features and than provide the overall deployment architecture.

10.3.1 Microsoft UDDI registry
Microsoft Enterprise Universal Description, Discovery, and Integration (UDDI)
Services is included in Windows Server 2003. Its main features are as follows:

� Supports versions 1.0 and 2.0 of the UDDI Programmer's API

� Has been developed using Microsoft ASP.NET and the Microsoft .Net
Framework

� Includes a Web interface with searching, publishing, and coordination
features

222 WebSphere and .Net Interoperability Using Web Services

� Takes advantage of the Active Directory service, providing the authentication
and authorization backbone for UDDI Services

Microsoft UDDI core entity names differ from the ones provided in the UDDI
specification. The relationship between names is shown in Table 10-1.

Table 10-1 Microsoft UDDI Core entity names

The installation consists of three components:

� Microsoft Internet Information Server 6.0 (IIS 6.0) - This is the Web server
housing the ASP.NET front end which is used to browse UDDI Services.

� Microsoft SQL Server 2000 or Microsoft SQL Server 2000 Desktop Engine
(MSDE) - This is the database to store the UDDI Services information.

� The Microsoft Management Console (MMC) management component, which
can be used to manage multiple UDDI Services from one administrative
console.

These components can be installed on the same machine or can be distributed
over the network. The distributed installation is available only with the Datacenter
or Enterprise Edition of Windows Server 2003 and does not support MSDE. A
distributed installation is configurable with different scalability topologies for each
component. For example, it is possible to have multiple Web servers with only
one database providing shared information.

10.3.2 Deployment architecture
The proposed architecture expects at least one classic front-end firewall with
packet filtering capabilities. This firewall must be configured, as usual, to allow
incoming HTTP requests on port 80 and HTTPS requests on port 443. More
robust firewall services able to inspect the HTTP and Web service request can
be obtained either by installing a more capable external firewall, an XML firewall,
or by using the URLScan tool from Microsoft.

Microsoft’s recommendation is: “A firewall should exist anywhere you interact
with an untrusted network, especially the Internet. It is also recommended that
you separate your Web servers from downstream application and database

UDDI.org Specification Microsoft UDDI Services

businessEntity Provider

businessService Service

bindingTemplate Binding

tModel tModel

 Chapter 10. Deploying Web services 223

servers with an internal firewall.” (from Improving Web Application Security,
Threats and Countermeasures, p.413).

In general, it is undesirable to install and run application code, such as a Web
service, on a server in the DMZ because access to DMZ servers needs to be
very tightly controlled. Administrators must have confidence that the machines
are not compromised by unauthorized programs or people. Allowing application
code onto a DMZ machine could result in more people needing access to the
DMZ machines. More care and attention needs to be given to the procedures to
authorize people to access the servers, to deploy application code and to
authenticate it.

The concern is not about errant employee programmers compromising the DMZ
servers, but about opening up the DMZ server to more people, via more
connection methods, and having no one team fully understanding the
implications of the additional software running on a DMZ server; this increases
vulnerability to attack.

Usually, the Web service which is exposed on the Internet network is an .asmx
file located in the Web server platform (Microsoft IIS). This deployment
architecture is shown in Figure 10-3 on page 225. By virtue of being deployed in
the DMZ, a Web service has an IP address that can be addressed externally and
it can also be protected by the external firewall and other security measures.
Chapter 19 of Threats and Countermeasures describes how to lock down the
resources used by the Web service to minimize the opportunities for anyone who
gets illicit access to the Web server machine to make use of the same resources
to access the intranet.

Our recommendation is to write Web services using the Service Interface
pattern, so the Web service has a limited number of connections inside the
intranet which can be monitored with an internal firewall.

224 WebSphere and .Net Interoperability Using Web Services

Figure 10-3 Internet Web services deployment architecture in Microsoft .Net environment

According to Microsoft guides, a Web service can also be deployed on the
internal Application Server; this happens when the Web service client is internal
too. Remote Web services are used as an alternative to .NET remoting.

Figure 10-4 shows a classic Web client connecting to an ASP.NET Web
application. To accomplish the client request, the Web application must invoke
the remote business layer, located in the application server; an ASP.NET Web
service is then used to connect the ASP.NET Web application, acting as a Web
service client, to the remote business layer.

Figure 10-4 Intranet Web services deployment architecture in Microsoft .Net environment

Web Server

Application Server

DMZ Intranet

Database

Bind Service (2)

Invoke Service (3)

FirewallFirewall

IIS

ASP.NET

UDDI
Service

Business
Layer

Data
Access
Layer

Web
Service

.NET remoting

Find Service (1)

Web Services
Client

Fi
nd

 S
er

vi
ce

 (1
)

Bind Service (2)

Invoke Service (3)

Web Server

Application Server

DMZ Intranet

Database

FirewallFirewall

IIS

Bind and invoke

ASP.NET

IIS

ASP.NET

Business
Layer

Data
Access
Layer

Web
Service

Web Client

Web
Application

 Chapter 10. Deploying Web services 225

All other non-functional requirements such as load balancing, fail-over
capabilities and server clustering can be added using external equipment and
operating system built-in capabilities. The Microsoft paper “Application
Architecture for .NET: Designing Applications and Services” includes a large
number of different deployment patterns for Web services; it can be found at:

http://www.microsoft.com/downloads/details.aspx?FamilyId=A08E4A09-7AE3-4942-B46
6-CC778A3BAB34&displaylang=en

Detailed information about security in a Microsoft environment can be found in
the Microsoft white paper Securing ASP.NET Web Services, found at:

http://www.microsoft.com/technet/itsolutions/net/maintain/secnetws.mspx

10.4 Summary
We have described how a Web service is deployed on the WebSphere and
Microsoft .Net platforms and summarized the runtime architecture guidance from
Microsoft and IBM. The architecture builds on the infrastructure used for Web
sites today.

The guidance on deploying Web services from Microsoft makes use of
capabilities in the Windows platform that will be familiar to Windows System
Programmers to secure the new services.

The IBM approach focuses on managing Internet access to Web services by
introducing a new cross-platform component, the Web Services Gateway. The
Web Services Gateway provides a single point of control for Web services across
multiple platforms that can be managed by a Systems Programmer with
WebSphere skills.

Both approaches share the same objective: exposing as little as possible of the
IT infrastructure to outside attention.

226 WebSphere and .Net Interoperability Using Web Services

http://www.microsoft.com/downloads/details.aspx?FamilyId=A08E4A09-7AE3-4942-B466-CC778A3BAB34&displaylang=en
http://www.microsoft.com/technet/itsolutions/net/maintain/secnetws.mspx

Part 3 Claims scenario

In this part, we build the claims scenario using WebSphere Studio Application
Developer and Microsoft Visual Studio .Net 2003.

Our goal is to show how to use the build and deployment capabilities of the
integrated development environment to realize the merger of the existing claims
applications as Web services.

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 227

228 WebSphere and .Net Interoperability Using Web Services

Chapter 11. Designing the scenarios

This chapter describes the scenarios, use cases and analysis of the types of
data being used. We analyze two scenarios. The first is an intranet scenario and
will be implemented without security. The second is an Internet scenario which
uses WS-Security. Only the first scenario has been implemented in this edition of
the redbook. The goal is to use WS-I security profile 1.1 when it is finalized to
implement the second scenario to demonstrate the use of secure Web service
between Microsoft .Net and WebSphere.

This chapter includes the following topics:

� Mergers and Acquisitions scenario
� External Claims Assessors scenario
� LGI and DCI Insurance claims applications: table schema
� XML Schema Data Types as common denominator

11

© Copyright IBM Corp. 2005. All rights reserved. 229

11.1 Mergers and Acquisitions scenario
The first step in the solution building process is the use case definition. In this
redbook, we decided to design and implement only those use cases that are
most useful in looking at interoperability between the WebSphere and Microsoft
.Net implementations of Web services technology.

Furthermore, we decided to select use cases having different levels of
complexity. The aim is to give the correct answer to designers and developers in
the following two cases:

� When the interoperability is very simple to achieve and detail is needed only
at development time. In this case, a typical problem is the use of a specific
SOAP format or a certain type for an input/output variable because of the
different programming languages supported by WebSphere and Microsoft
.Net.

� When some decisions and design choices have an impact across the
application environment and decisions must be taken earlier during the
design phase.

This can happen when more complex specifications are used, for example
WS-Security. When using more complex specifications, it is necessary to
verify that they can be considered interoperable or whether there are some
limits in the interoperability which may impact the application design.

11.1.1 Use cases overview
For the Mergers and Acquisitions scenario, as part of the ClaimProcess
application, we identify the following actors:

� Customer - The insurance policy owner

� Customer service - An LGI employee who works in the contact center and
gives remote assistance to customers by phone

� Agent - An LGI employee who works in a generic LGI branch office and gives
assistance to local customers

We also identify a use case:

� Register claim - All actors listed above can register a claim using an Internet
form provided on the LGI Internet site. The difference between the three
actors is that, while the customer executes the claim registration by himself,
the customer service or agent executes the claim registration on behalf of a
customer but using their own authentication on the system.

Using the Rational XDE tool, which is a plug-in of WebSphere Studio Application
Developer, we design the use case model as shown in Figure 11-1 on page 231.

230 WebSphere and .Net Interoperability Using Web Services

Figure 11-1 Mergers and Acquisitions scenario use case model

11.1.2 Actors
Table 11-1 provides details about the customer actor.

Table 11-1 Customer actor details

Table 11-2 on page 232 provides details about the customer service actor.

Note: Explaining how to use WebSphere Studio Application Developer and
Rational XDE plug-in to design and implement scenarios’ use cases is beyond
the scope of this publication. More information can be found in WebSphere
Version 5 Application Development Handbook, SG24-6993-00

Register Claim

Agent

Customer

Customer service

Actor name Customer

Brief description Customer: a person who has signed a policy with LGI
or DCI.

Status Primary

Relationships

Associations to use cases Use case 001: Register claim

 Chapter 11. Designing the scenarios 231

Table 11-2 Customer service actor details

Table 11-3 provides details about the agent actor.

Table 11-3 Agent actor details

11.1.3 Use case 001: Register claim
Table 11-4 provides details about the register claim use case.

Table 11-4 Use case 001: Claim registration

Actor name Customer service

Brief description An LGI or DCI employee who works in the customer
service department answering to customers phone
calls and providing them remote assistance

Status Primary

Relationships

Associations to use cases Use case 001: Register claim

Actor name Agent

Brief description An LGI or DCI employee who is responsible to contact
customers, propose and sign policies, and provide
local assistance to the customer during all policy
validation time

Status Primary

Relationships

Associations to use cases Use case 001: Register claim

Use case name Use case 001: Register claim

Subject area Claim system

Business event A claim is submitted following up a car accident
occurred to a LGI or DCI customer.

Actors � Customer
� Customer service
� Agent

232 WebSphere and .Net Interoperability Using Web Services

A use case activity diagram is shown in Figure 11-2 on page 234.

Preconditions � The customer who refers the car accident owns a
valid policy signed with LGI or DCI.

� The user who submit the claim is already
connected to the new LGI Web site and
authenticated to submit a claim (user
authentication is supposed to be provided by an
LDAP server which contains all information
regarding registered Web users).

Steps 1. User selects Register Claim from the menu.
2. The system displays the claim registration form (if

the user is a customer, the value in the customer
id field is prefilled and fixed)

3. User fills out the form with all required information
and performs the form submission.

4. After validating the inputs, the system performs
the following two steps:
a. Asks each back-end system if the claim owner

belongs to its customers list and holds a valid
policy.

b. Performs the claim submission to the
back-end system which gives an affirmative
answer to the previous question. If no system
returns an affirmative answer, the claim is
rejected.

5. The system displays the result of submission
process.

Termination outcome 1 The claim is registered on the LGI or DCI back-end
system with the state validation.

Notes Web users are not required to be policy owners. We
assume that the person who submits the claim is not
intended to be the same user as the claimant; in fact
customer service and agents can also perform a claim
registration on behalf of a customer. For this reason
customer identification is part of the claim information.

 Chapter 11. Designing the scenarios 233

Figure 11-2 Activity diagram for the register claim use case

11.1.4 Realizing the use case
Once the use case model is completed, we start realizing the use case. The use
case sequence diagram that is shown in Figure 11-3 on page 235 represents
objects and interactions.

Customer/Customer service/Agent
selects Claim Registration from

Menu

SystemCustomer/Customer service/Agent

Displays the registration
form

Fills the
registration form

and press the
submit button

Asks to the LGI back-end
system if the customer is

its own customer

Asks to the DC back-end
system if the customer is

its own customer

Invokes the claim
registration service of

the LGI back-end
system passing all claim

information

Invokes the claim
registration service of

the DC back-end system
passing all claim

information

Yes

No
Displays an error

message

Dysplays the result
message

No

Yes

234 WebSphere and .Net Interoperability Using Web Services

Figure 11-3 Sequence diagram for the register claim use case

Objects defined for the use case implementation are as follows:

� MenuForm - a boundary class responsible for calling and displaying the
ClaimRegistrationForm

� ClaimRegistrationForm - a boundary class responsible for collecting all
required user information and calling the claim registration process

� ClaimRegistrationProcess - a control class responsible for managing the
claim registration process

� LGIClaimSystem - a boundary class responsible for finding an LGI customer
and registering a claim in the LGI back-end system

� DCClaimSystem - a boundary class responsible for finding a DCI customer
and registering a claim in the DCI back-end system

� ClaimRegistrationResultForm - a boundary class which displays the claim
registration process result

 : ClaimRegistrationResult : Customer : MenuForm : ClaimRegistrationProcess: ClaimRegistrationForm : DC-ClaimSystem: LGI-ClaimSystem

1 : \select "Claim Registration"\

2 : display ()

3 : \fill in and submit\
4 : registerClaim (customerID , policy
ID , accidentDate , accidentDescription

, involvedCars)
5 : findCustomer (customerID , policy

ID)

result

6 : registerClaim (customerID , policy
ID , accidentDate , accidentDescription

, involvedCars)

claimID

7 : findCustomer (customerID , policy
ID)

8 : registerClaim (customerID , policy
ID , accidentDate , accidentDescription

, involvedCars)

9 : display ()

Note: Supposing that the
customer is a LGI customer,
which is step5 result=true

Note: Supposing that the
customer is a DC customer, which
is step5 result=false

 Chapter 11. Designing the scenarios 235

Application architecture and design model
The layered modular design of the ClaimProcess application is based on the
J2EE architecture.

The ClaimProcess application design is logically split into four layers:

� Presentation layer - Containing all presentation related implementation
modules.

� Business layer - Containing the reusable business logic components.

� Integration layer - Including components to integrate any external system
such as data sources or services outside the system boundary.

� EIS (enterprise information system) - Providing the information infrastructure
of an enterprise, including relational databases, mainframe transaction
processing systems, and legacy database systems.

Following the main purpose of this redbook, which is to show how to realize an
interoperable solution based on Web services technology, in the rest of the
chapter we focus only on the design and implementation of the communication
between the business layer and the integration layer. This implementation is
provided via Web services. All other components required to complete the
examples are supposed to be already developed and working.

The design model structure represents the different application layers. The
design layer packages are derived from the application architecture previously
described. The design model is represented in Figure 11-4.

Figure 11-4 High-level design diagram

236 WebSphere and .Net Interoperability Using Web Services

Integration layer design
Based on the system analysis, we have to design integration components for the
two external ClaimProcess services, LGIClaimSystem and DCClaimSystem,
which are used to realize the register claim use case.

Figure 11-5 shows the register claim analysis diagram with the external
LGIClaimSystem and DCClaimSystem boundary classes as a result of the
application analysis.

Figure 11-5 Register claim analysis diagram

First of all, we create two new subsystems within the integration layer design
package, as shown in Figure 11-6 on page 238.

We must keep in mind that the two subsystems refer to different IT environments;
so, even if it is providing the same services, the application development must
produce different code.

� Java code for LGIClaimSystem
� C# code for DCClaimSystem

Because we are now in the design environment, we decide to use the Rational
XDE™ tool for modelling both layers. The development phase will instead be
carried out with the specific development tools:

� WebSphere Studio Application Developer for the LGIClaimSystem
� Microsoft Visual Studio .Net 2003 for the DCClaimSystem

ClaimRegistrationForm ClaimRegistrationProcess DC-ClaimSystem

LGI-ClaimSystem

Claim

 Chapter 11. Designing the scenarios 237

Figure 11-6 Register claim integration layer package

Web services design
For both previously defined subsystems, we have a simplified class diagram
containing only data access objects and Web services objects; data access
objects adapt the FindCustomer service and the RegisterClaim service to LGI
and DCI back-end systems.

Table 11-5 lists the FindCustomer and RegisterClaim Web services integration
design classes. The class names and description are considered valid for both
WebSphere and Microsoft .Net environments. We use the data access objects
model because it is a general pattern for objects providing data from back-end
systems.

Table 11-5 Register claim integration layer simplified class diagram

Class name Description

DataAccessException This exception is raised during a generic
DataAccessObject methods execution.

CustomerDataAccessObject This is the data access object that
encapsulates the data manipulation of the
Customer object.

ClaimDataAccessObject This is the data access object that
encapsulates the data manipulation of the
Claim object.

ClaimWebService This represents the ClaimRegistration
Web service implementation class.

238 WebSphere and .Net Interoperability Using Web Services

The final step is to provide the specifications of Web service exposed methods,
as shown in Figure 11-7.

Figure 11-7 Register claim scenario design

The ClaimWebService will provide the following two methods:

1. findCustomer, which accepts the following inputs:

– customerID, type string
– policyID, type string

and returns a boolean stating whether the corresponding customer has been
found in the system. A ClaimException is the fault returned if an error occurs
during the Web service execution.

2. registerClaim, which accepts the following inputs:

– a string object containing the customerID, type string
– a string object containing the policyID, type string
– a date object containing the accidentDate, type dateTime
– a string object containing the accidentDescription, type string

ClaimException This exception is used by an integration
service to notify of an error during
execution of the external Claim Web
service.

Class name Description

 Chapter 11. Designing the scenarios 239

– an array of strings containing the involvedCars list, type string with
unbounded maxOccurs

and returns a string containing the generated claim code. A ClaimException is
the fault returned if an error occurs during the Web service execution.

After this design step, all further design and implementation details must be
considered platform/technology dependent and must be carried out separately
within the two different environments. In any case, our purpose is not to focus on
coding data access objects; they can be EJBs or Java classes in the case of a
WebSphere platform or any piece of Microsoft .Net compatible code (C#,
VisualBasic, etc.) in the case of a platform. The examples we provide are
focused on:

� How to turn these data objects into Web services or how to create a Web
service which is able to invoke them

� How to build a corresponding Web service client, deploy and test the
developed code

11.2 External Claims Assessors scenario
This section details the analysis and design process for the second scenario.

11.2.1 Use cases overview
For the External Claim Assessors scenario, part of the ClaimProcess solution,
we identify the following actor:

� Claims handler - An LGI employee who is responsible for managing claim
process

We also identify a use case:

� Manage external claim assessor - The Claim BPM System, during the claim
investigation process, selects an external assessor to investigate the claim
and produce the assessment report. The selected external assessor sends
back the produced report.

11.2.2 Actors
Table 11-6 on page 241 provides details about the claim BPM system actor.

240 WebSphere and .Net Interoperability Using Web Services

Table 11-6 Claims handler actor details

Table 11-7 provides details about the external assessor system actor.

Table 11-7 External assessor actor details

11.2.3 Use case 002: Manage external claim assessors
Table 11-4 on page 232 provides details about the manage external claim
assessors use case.

Table 11-8 Use case 002: Manage external claim assessors

Actor name Claims handler

Brief description An LGI employee who manages the claim processes.
He uses a client application showing all processing
claims and their status. The application also provides
some work lists with all claims in a specific status
which need a manual activity. A claims handler can
choose whether a claim should be investigated by LGI
or by an external assessor.

Status Primary

Relationships

Associations to use cases Use case 002: Manage external assessor process

Actor name External Assessor System

Brief description The external assessor back-end system which is able
to answer to assessment availability requests, to
accept assessments requests and to send
assessment reports.

Status Primary

Relationships

Associations to use cases Use case 002: Manage external assessor process

Use case name Use case 002: Manage external claim assessor

Subject area Claim system

Business event A valid claim must be investigated before judgement.
The investigation process is delegated to an external
independent assessor.

Actors � Claims handler

 Chapter 11. Designing the scenarios 241

Using the Rational XDE tool, we design the use case model is shown in
Figure 11-8 on page 243; the activity diagram is shown in Figure 11-9 on
page 243.

Preconditions 1. A claim is submitted to the system.
2. The claim is validated (policy not expired, valid

driver insurance, provided claim details are
accurate and correct, etc.).

3. The claims handler requests the current work list.
The work list is displayed containing all claims in
the “investigation” state; that is all claims needing
an assessment.

Steps 1. The claims handler selects a specific claim that
needs to be investigated by an external assessor
and clicks the button External Assessment.

2. The Assessor Business Process Management
(Assessor BPM) receives this information and
starts the process associated with an external
assessment.

3. The Assessor BPM asks the Assessor
Management System the list of eligible external
assessors passing some information about the
claim to be assessed (post code, car type, etc.).

4. After receiving the response from the Assessor
Management System, the Assessor BPM needs to
ask each assessor in the returned list for their
current availability. Availability is requested to the
External Assessor System providing some
information about the claim to be assessed.

5. After receiving the availability response from each
external assessor, the Assessor BPM builds a new
list containing only available assessors and
passes this list to the Assessor Management
Business Rules to select an assessor.

6. The Assessor BPM asks the External Assessor
System for an assessment from the selected
assessor.

7. After completing the assessment, the External
Assessor System sends the final assessment
report to the Assessor BMP.

8. The Assessor BPM receives the assessment
reports and saves it in the document management
system.

Termination outcome 1 The claim assessment is saved in the Document
Management System and the claim status is judge.

242 WebSphere and .Net Interoperability Using Web Services

Figure 11-8 External Claim Assessors scenario use case model

Figure 11-9 Activity diagram for the manage external claim assessor use case

Manage external claim
assessor

Claim Handler

[NO]

[YES]

[YES]

[NO]

[YES]

/assessor found?

/availability response

/is the "ElegibleAssessor" list empty?

/is the "AvailableAssessor" list empty?[NO]

[NO]

[YES]

Claim Handler

Claim Handler selects one claim from
the list of valid claims and press the

"External assessment" button

Assessor BPM starts the process asking
the Assessor Management System for
the "ElegibleAssessor" list basing on

some specific claim properties

Assessor BPM sends an
"availability request" to the

external assessor

Assessor BPM scrolls the
"ElegibleAssessor" list

Assessor BPM asks the Assessor Management
Business Rules to select only one assessor

passing the "AvailableAssessor" list

Assessor BPM stops the
process and associate an
exception to the process

execution result

Assessor BPM adds the
assessor to the "Available

Assessor" list

Assessor BPM counts
"ElegibleAssessor" list

items

Assessor BPM
couns "Available

Assessor" list items

Assessor BPM sends an
"assessment request" to

the external assessor

External assessor sends
the assessment report to

the assessor BPM

Assessor BPM asks the
document management

systems to save the report

Process completed

 Chapter 11. Designing the scenarios 243

11.2.4 Realizing the use case
Once we have completed the use case model, we start realizing the use case;
the use case sequence diagram shown in Figure 11-10 represents objects and
interactions.

Figure 11-10 Sequence diagram for the manage external claim assessor use case

Objects defined for the use case implementation are as follows:

� Assessor Business Process Management - a control class responsible for
managing the claim assessment process.

� Assessor Management System - a control class responsible for managing the
list of registered external assessors and providing a list of ones who are
eligible to perform the assessment for a specific claim.

� Assessor Management Business Rules - a control class responsible for
choosing only one assessor among those who stated their availability. The
choice is based on specific business rules.

: AssessorManagementSystem : Claim Handler : AssessorBPM : BusinessRules : DocumentManagementSystem: ExternalClaimSystem

1 : externalAssessmentProcess
(claimCode)

2 : getElegibleAssessors (claim)

elegibleAssessorList

3 : requestAvailability (claim)

availability

4 : selectAssessor (availableAssessor)

selectedAssessor

5 : requestAssessment ()

ACK

6 : sendReport (assessmentReport)

ACK
7 : saveReport (assessmentReport)

reportSaved

local
Scrolling the list, for each element

local
if assessor is available it is addedd

in the availableAssessor list

244 WebSphere and .Net Interoperability Using Web Services

� Document Management System - a control class responsible for managing
documents such as the assessment report. This use cases asks the class to
save the assessment report.

� External Assessor System - a boundary class responsible for answering an
availability request for a specific claim, receiving assessment requests and
sending assessment reports.

Application architecture and design model
The application architecture and design model is the same as the one detailed
for the previous scenario. See “Application architecture and design model” on
page 236.

Web services design

The Web services design is postponed until we start work on implementing the
scenario when the WS-I security profile is finalized and supported by Microsoft
.Net and WebSphere Application Server 6.0.

11.3 Claim applications: table schema
We have implemented simple LGI and DCI register claim sample applications to
use in the demonstration of the interoperability between the Microsoft .Net
Common Language Runtime and WebSphere runtime environments.

The sample application is implemented both in Microsoft Visual Studio .Net 2003,
and in WebSphere Studio Application Developer.

The DCI application uses the Data Access model, where the Web service is the
business layer and the data layer is represented by the DataAccessClass and
ClaimAccessClass. Microsoft. Table 11-9 summarizes the fields and field types in
the table schema.

Table 11-9 Sample application fields and field types - table schema

Name of fields Type of field

Customer ID String

Policy ID String

Accident Date DateTime

Accident Description String

Vehicles involved in the accident Array of String

 Chapter 11. Designing the scenarios 245

11.4 XML schema data types as common denominator
Implementation interoperability between Microsoft .Net and WebSphere Web
services require that we understand the automatic conversion of data types in
both environments. Microsoft .Net may represent data types differently than
WebSphere. However, XML data types, validated by the XSD (XML Schema),
are used as the common denominator. Microsoft .Net converts its data types to
XML data types before sending the SOAP message to WebSphere. When
WebSphere receives the message, it converts the message from XML back to
WebSphere Java data types. In the sample application, we are using Microsoft
.Net DateTime, String Array, String and Exception.

11.4.1 Data type mapping
The sample application is implemented using String, Boolean, Array of String
and Exception classes. Table 11-10 summarizes the available data type
mappings. However, not all the types are interoperable between Microsoft .Net
and WebSphere. When merging a Microsoft .Net system to a WebSphere
system, we may need to take this difference into consideration. The problematic
types can be wrapped in a new class.

Table 11-10 Data Type mapping between Microsoft .Net and WebSphere

Return Claim Code String

Return status Boolean

Name of fields Type of field

XML Data Type Microsoft .Net 2003 Data
Type

WebSphere Data Type

AnyUri System.Uri Java.net.URL

base64Binary Byte[] Byte[]

Boolean Boolean boolean

Byte SByte byte

DateTime DateTime java.util.date

Decimal Decimal java.math.BigDecimal

Double Double Double

Float Single Float

246 WebSphere and .Net Interoperability Using Web Services

11.4.2 SOAP message for registerClaim()
When the registerClaim() Web service method is invoked, it sends a SOAP
request from WebSphere to Microsoft .Net. The SOAP request looks like that
shown in Example 11-1. Within the SOAP message, we see that the simple
string type and date type are interoperable between Microsoft .Net and
WebSphere. This SOAP message conforms to the WS-I Basic profile 1.1.

Example 11-1 SOAP request for registerClaim() from WebSphere to Microsoft .Net

<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://tempuri.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <q0:registerClaim>
 <q0:customerID>ABC123455</q0:customerID>
 <q0:policyID>1234567890</q0:policyID>
 <q0:accidentDate>2004-09-24T00:00:00.00Z</q0:accidentDate>
 <q0:accidentDescription>At the corner of Springfield Blvd

</q0:accidentDescription>
 <q0:involvedCars>
 <q0:string>William</q0:string>
 <q0:string>Francesca</q0:string>

HexBinary Byte[] byte[]

Int Int32 int

Long Int64 long

NegativeInteger String int

nonNegativeInteger System.Decimal int

nonPositiveInteger System.Decimal int

Short Int16 short

unsignedInt UInt32 int

Map IList java.util.HashMap

Vector IList java.util.Vector

Array IList array of built-in data types

Element DataSet org.w3c.dom.Element

XML Data Type Microsoft .Net 2003 Data
Type

WebSphere Data Type

 Chapter 11. Designing the scenarios 247

 </q0:involvedCars>
 </q0:registerClaim>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

When the request is received in WebSphere, the SOAP response looks like that
shown in Example 11-2. A claim code of type String is returned and is the
concatenation of the Customer ID, Policy ID and Accident Date. Note that the
SOAP response has the element registerClaimResponse. This SOAP message
also conforms to the Basic profile 1.1 and it is interoperable between Microsoft
.Net and WebSphere.

Example 11-2 SOAP response for registerClaim() from Microsoft .Net

<?xml version="1.0" encoding="utf-8" ?>
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <registerClaimResponse xmlns="http://tempuri.org/">
 <registerClaimResult>ABC123455 1234567890 9/23/2004 5:00:00
PM</registerClaimResult>
 </registerClaimResponse>
 </soap:Body>
 </soap:Envelope>

11.4.3 SOAP message for findCustomer()
The LGI Insurance application also provides the Web service to find a customer.
If the customer is LGI’s customer, then the findCustomer() method will return
true. Otherwise, it will return false. In addition, if the customer ID is longer than
seven characters, an ItsoClaimException will be thrown.

The SOAP request message sent from WebSphere to Microsoft .Net looks like
that shown in Example 11-3. This SOAP request message conforms to the WS-I
Basic profile 1.1.

Example 11-3 SOAP request message for findCustomer() sent from WebSphere

<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://tempuri.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <q0:findCustomer>
 <q0:customerID>ABC1234</q0:customerID>
 <q0:policyID>1234567890</q0:policyID>

248 WebSphere and .Net Interoperability Using Web Services

 </q0:findCustomer>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The SOAP response message sent from Microsoft .Net to WebSphere looks like
that shown in Example 11-4. Again, an element findCustomerResponse is
included in the SOAP body. The SOAP message conforms to the Basic profile
1.1 and provides interoperability between Microsoft .Net and WebSphere.

Example 11-4 SOAP response message for findCustomer() from Microsoft .Net

<?xml version="1.0" encoding="utf-8" ?>
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <findCustomerResponse xmlns="http://tempuri.org/">
 <findCustomerResult>true</findCustomerResult>
 </findCustomerResponse>
 </soap:Body>
 </soap:Envelope>

11.4.4 SOAP exception for findCustomer()
When the Customer ID is longer than seven characters for findCustomer(), it
generates an ItsoClaimException with an Invalid Customer message. The
SOAP exception message looks like the one shown in Example 11-6 on
page 250. Microsoft .Net generates a SOAP exception for any exception that
occurs in the Microsoft .Net Web service.

Example 11-5 SOAP request for findCustomer() with invalid string sent to Microsoft .Net

<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://tempuri.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <q0:findCustomer>
 <q0:customerID>ABC123456</q0:customerID>
 <q0:policyID>1234567890</q0:policyID>
 </q0:findCustomer>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The SOAP exception has fault tags in the SOAP body of the message, which is
required to conform to the WS-I profile 1.1.

 Chapter 11. Designing the scenarios 249

Example 11-6 SOAP exception response for findCustomer() from Microsoft .Net

<?xml version="1.0" encoding="utf-8" ?>
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Server was unable to process request. --> Invalid
Customer</faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
 </soap:Envelope>

11.5 Summary
This chapter provides two scenarios with the use case and actors illustrated in
different diagrams. We only implement the first scenario, leaving the second
scenario for a future update. We summarize the different field types which are
used in the implementation of the first scenario, map different data types
between Microsoft .Net and WebSphere, and briefly introduce the SOAP
messages that are passed between Microsoft .Net and WebSphere, since these
data types are simple ones and have no problem in representation by both
Microsoft .Net and WebSphere. However, some other types may not be
interoperable and we may need to wrap them in new classes.

250 WebSphere and .Net Interoperability Using Web Services

Chapter 12. Building the claims scenario

As discussed in previous chapters, we have gone through two scenarios, that is,
Mergers and Acquisitions and External Claims Assessor, from business case
and patterns selection to a discussion of implementation. In this section, we will
demonstrate implementation and execution of the Mergers and Acquisitions
register claim scenario using WebSphere Studio Application Developer, which
will be followed by implementation using Microsoft .Net in the next section.
Further, we will investigate interoperability across both WebSphere and Microsoft
.Net platforms by implementing a common front end client in WebSphere
interfacing to both platforms.

12

© Copyright IBM Corp. 2005. All rights reserved. 251

12.1 Building the scenario for WebSphere
In this scenario, Lord General Insurance (LGI) has acquired a typical modern
dot.com auto insurance company, DirectCarInsure.com (DCI). There are existing
business logics and processes that need to be accessed using a common front
end by users of both the companies. In this section, we will consider how to
make LGI’s business logic, which is in the form of Enterprise JavaBeans,
available for access by the common front end using Web services. In the next
section, we will perform a similar step for the business logics and processes
used by DCI. In the last section, we will implement two J2SE Java client
prototypes which, in the complete implementation, would be incorporated into a
Java 2 Enterprise Edition servlet to give the register claim Web page access to
the Web services.

In summary, we will:

� Create Web services for LGI’s register claim application from existing
Enterprise JavaBeans

� Test the Web services using the Test Client auto-generated by WebSphere
Studio Application Developer

� Deploy the Web services in WebSphere Application Server

12.1.1 Problem definition
LGI’s business logics are available in the form of ItsoClaim.ear which needs to be
exposed to a common front end to process a user request.

12.1.2 Solution
We will expose the business logic by creating of Web service from the existing
Enterprise JavaBeans in ItsoClaim.ear.

We will perform the following tasks in the given order:

1. Import Enterprise JavaBeans
2. Test imported Enterprise JavaBeans
3. Create Web service from Enterprise JavaBeans
4. Test created Web service

12.1.3 Import Enterprise JavaBeans
In order to create a Web service from an existing Enterprise JavaBean (EJB), the
first step is to import the EJB in WebSphere Studio Application Developer’s
development environment.

252 WebSphere and .Net Interoperability Using Web Services

1. Start WebSphere Studio Application Developer 5.1.2 with a new workspace
and then select the session bean LGIClaimRegistration in the EJB Modules
and File →Import from the menu bar to invoke the Import wizard. Select
Import source as EAR file as shown in Figure 12-1.

Figure 12-1 Import wizard: import source

2. Select ItsoClaim.ear at the Import wizard’s Enterprise Application Import
interface using the Browse button at the EAR file item.

3. Make sure to select the utility JAR ItsoClaimCommon.jar to be imported as a
utility project, as shown is Figure 12-2 on page 254.

 Chapter 12. Building the claims scenario 253

Figure 12-2 Import wizard: selecting utility JAR as utility project

4. In the next panel, Manifest Class-Path JARs and other module files will be
displayed with available dependent JARs. In this example, there will be two
JARs and a WAR, namely ItsoClaimEJB.jar, ItsoClaimCommon.jar and
ItsoClaimWeb.war, which will be displayed in the left pane of the interface.

5. After successfully importing the .ear file, open the project navigator view. The
workspace should look like Figure 12-3. Note that ItsoClaimCommon.jar is
imported as a separate utility project.

Figure 12-3 Workspace after import

254 WebSphere and .Net Interoperability Using Web Services

Source code can be examined by navigating through the classes on the
navigator pane. As given, we have a session bean
itso.examples.claim.ejb.LGIClaimRegistration with class and interfaces as
shown in Figure 12-4.

Figure 12-4 Given session bean itso.examples.claim.ejb.LGIClaimRegistration

To visualize interface and classes, Figure 12-5 on page 256 illustrates the
outline.

 Chapter 12. Building the claims scenario 255

Figure 12-5 Outline of EJB

12.1.4 Test imported Enterprise JavaBeans
Now we will test the EJB using WebSphere Test Environment to ensure that it
has been imported successfully and the business logic is working properly.
Figure 12-6 shows the navigator in the resource perspective.

1. Select the session bean LGIClaimRegistration and right-click and select
Run on Server.

Figure 12-6 Selecting the LGIClaimRegistration session bean to test

256 WebSphere and .Net Interoperability Using Web Services

This activity will perform the following tasks:

– Create a test server
– Deploy the EJB on the server
– Generate Test Client
– Invoke IBM Universal Test Client browser to test the EJB

2. Upon clicking Run on Server, as described above, a Server Selection wizard
will appear. Since there is no server at the moment, this wizard will suggest
the default to create new server. Select the server type as WebSphere
Server 5.1 →Test Environment as illustrated in Figure 12-7.

Figure 12-7 Create a new Test Server

3. In the next panel, WebSphere Server Configuration Settings, there is only one
item to check: HTTP Port Number; select Use default port numbers, for
instance, 9080.

 Chapter 12. Building the claims scenario 257

4. After clicking Next, the Select Tasks interface will appear with a task option
for ItsoClaimEJB; check Deploy EJB Beans as shown in Figure 12-8. This
task will generate relevant deployment objects for ItsoClaimEJB.

Figure 12-8 Check Deploy EJB beans

5. After processing the tasks chosen above, a server WebSphere v5.1 Test
Environment will be created with deployed Enterprise application ItsoClaim,
as shown in Figure 12-9.

Figure 12-9 Test Server with deployed application

The IBM Universal Test Client will be launched with LGIClaimRegistration
displayed under EJB References, as shown in Figure 12-10 on page 259.

258 WebSphere and .Net Interoperability Using Web Services

Figure 12-10 IBM Universal Test Client

6. Expand LGIClaimRegistration →LGIClaimRegistrationHome and click
LGIClaimRegistration create() in the IBM Universal Test Client, as
illustrated in Figure 12-11.

Figure 12-11 Expanded view of EJB LGIClaimRegistration

7. Click Invoke to create the object LGIClaimRegistration. As a result, the new
object LGIClaimRegistration, along with a button called Work with Object, will
be displayed in the Result section, as shown in Figure 12-12 on page 260.

 Chapter 12. Building the claims scenario 259

Figure 12-12 Created Object LGIClaimRegistration

8. In order to test the methods of the Object LGIClaimRegistration, click Work
with Object. As a result, both methods findCustomer and registerClaim will
be displayed under Method Visibility. You will need to expand instance
LGIClaimRegistration 1, as shown in Figure 12-13.

Figure 12-13 Invoked object LGIClaimRegistration

9. To test the method findCustomer, click findCustomer. The right pane will
show an interface to accept required input parameters for the method
findCustomer, as shown in Figure 12-14 on page 261.

260 WebSphere and .Net Interoperability Using Web Services

Figure 12-14 Parameters for method findCustomer

Do not type anything in either parameter. An exception with message
customerID is null will be thrown if the method is invoked with both
parameters, customerID and policyID, passed as a null string, as illustrated in
Figure 12-15.

Figure 12-15 Exception with message customerID is null

Similarly, an exception with message policyID is null will be thrown when
only policyID is passed as a null string. If both customerID and policyID are
passed with non-null values but do not match any existing customer details,
then false (boolean) will be passed as the result value by the method
findCustomer. If both parameters customerID and policyID match the
customer details, then true (boolean) will be passed as a result by the
method findCustomer, as shown in Figure 12-16 on page 262.

 Chapter 12. Building the claims scenario 261

Figure 12-16 Output as true (boolean) on matched customer details

This testing shows that test results are as per the business logic/process of the
EJB and ensure successful import and proper behavior of the EJB.

12.1.5 Create a Web service from Enterprise JavaBeans
We will create a Web service for the ItsoClaimRegistration EJB using the Web
Service wizard of WebSphere Studio Application Developer. The wizard will also
create a WSDL document, a deployment descriptor, proxy classes and a test
client for the created Web service. The Web service proxy and test client are
created in a separate Web projects.

Select the ItsoClaimEJB in the EJB Modules and then click File → New →
Other. Select Web Services to display the various Web service wizards. Select
Web Service and click Next to start the Web Service wizard. Go through all the
pages of the wizard. Click Next on each page to get to the next page.

262 WebSphere and .Net Interoperability Using Web Services

1. In the Web service type drop-down menu, select EJB Web service and
ensure that the boxes selected in Figure 12-17 are checked; then click Next.

Figure 12-17 Web service options

2. Service Deployment configuration (Figure 12-18 on page 264) follows.

 Chapter 12. Building the claims scenario 263

Figure 12-18 Naming Web service projects

– Change Router project name to ItsoClaimRouterWeb.
– Change Client project EAR to ItsoClaimClient to avoid any runtime

errors while invoking the Web service

Click Next.

3. Select the Web service EJB (Figure 12-19).

Figure 12-19 Select EJB to convert into a Web service

Click Browse EJB Beans then select EJB bean LGIClaimRegistration;
click Next.

264 WebSphere and .Net Interoperability Using Web Services

The classes will be completed by the wizard as in Figure 12-20.

Figure 12-20 Classes and names selected by Web service wizard

4. Web service Java Bean identity:

– Make sure that methods findCustomer and registerClaim are checked.

– Select Document/Literal as the default for Style and Use. The security
configuration should be set to No Security as this Web service is for
internal use only. Click Next.

5. In the Web service Test Page, click Launch to invoke the Web service
browser, then click Next.

6. In the Web service Proxy Page, make sure that Generate proxy is checked,
that the Output folder is /ItsoClaimEJBClient/JavaSource and that Security
Configuration is selected as No Security since it is for internal access; click
Next.

7. In the Web Service Client Test, make sure that following methods are
checked:

Figure 12-21 Client methods

Also ensure that Test the generated proxy and Run test on server are
checked, then click Next.

8. In the Web service Publication window, do not check any option since we will
not be publishing the Web service for a while.

 Chapter 12. Building the claims scenario 265

Two Web service Warning windows will pop up.

Figure 12-22 Warning messages

The array:involvedCars is being used in the methods registerClaim and hence
method registerClaim will not be available in the JSP client.

After processing, Test Client will display the following methods to test:

Figure 12-23 Generated test client

266 WebSphere and .Net Interoperability Using Web Services

Three new projects will be created as shown in Figure 12-24. Project
ItsoClaimRouterWeb contains the WSDL file for generated Web service and
ItsoClaimEJBClient contains teh Test JSP Client.

Figure 12-24 Three new projects created

Generated files
After generation of the Web service, the generated files are shown in
Figure 12-25 on page 268

Note: The method registerClaim is not available to the Test Client due to
array:involvedCars not being supported in the JSP client. However, the
method registerClaim is available in the Web Service Explorer.

 Chapter 12. Building the claims scenario 267

.

Figure 12-25 Project view after Web service generation

Files generated in the server-side Web projects
The following files have been created as per the options selected in the Web
Service wizard.

� In ItsoClaimRouterWeb

The WSDL file \WebContent\WEB-INF\wsdl\LGIClaimRegistration.wsdl
describes the Web service to the clients. A copy is also in the WebContent
folder of client project ItsoClaimEJBClient.

� In ItsoClaimEJB

– Deployment descriptor: webservices.xml, ibm-webservices-ext.xml, and
ibm-webservices-bnd.xml. These files describe the Web service according
to the Web services for J2EE style (JSR 109).

– Service endpoint interface (SEI):
itso.examples.claim.ejb.LGIClaimRegistration_SEI.java is the interface
defining the methods of the Web service.

268 WebSphere and .Net Interoperability Using Web Services

Files generated in the client-side Web project
Two packages are generated in the ItsoClaimEJBClient project by selecting the
option to create a client-side proxy:

� Proxy classes are generated in packages itso.example.claim.ejb and
itso.example.claim.exception. These classes are used by the client to make
remote calls as per JSR 101. With the help of these classes, the client can
instantiate local representations of the remote classes. The generated test
JSPs also use these proxy classes. For more information about Web service
generation using WebSphere Studio Application Developer, refer to
WebSphere Version 5.1 Application Developer 5.1.1 Web Services
Handbook, SG24-6891.

� Test client: JSPs to test each method exposed as a Web service. The test
client is generated in the WebContent/sample/LGIClaimRegistryProxy folder.

� Deployment descriptor: webservicesclient.xml and extension. These files
describe the Web service in the client according to the Web services for J2EE
style (JSR 109).

� A copy of the WSDL file (in WEB-INF\wsdl).

12.1.6 Test the created Web service
We can test the Web service using the generated Test JSP Client or the Web
service Explorer. Since we selected the Launch Web service Explorer option
during Web service creation, it will already be launched and available, as shown
in Figure 12-26 on page 270.

 Chapter 12. Building the claims scenario 269

Figure 12-26 Web services explorer

The Explorer can also be launched later; use the following steps:

1. Navigate to the WSDL file of the Web service. In this scenario, this file is
LGIClaimRegistartion.wsdl.

2. Select the WSDL file then right-click and select Web Services →Test with
Web Services Explorer. This launches the tool, as shown in Figure 12-26.

3. The Explorer will display both the methods findCustomer and registerClaim.
Select the method findCustomer.

4. Select customer ID ABC123 and policyID P00245, then click Go.

findCustomerReturn (boolean): 1 will be displayed as
findCustomerResponse in the Status pane.

5. Similarly, other test cases related to the generated Web service can be tested
in the Web service Explorer.

After successfully testing all test cases, we conclude that the generated Web
service provides all business logic/processes of the EJB LGIClaimRegistration.

270 WebSphere and .Net Interoperability Using Web Services

This business logic/ processes can be accessed by other applications using the
generated Web service.

12.1.7 Deploy the created Web service
In order to deploy the Web service on the application server, we will first export
the application to an EAR file and then install the EAR file on WebSphere
Application Server.

Exporting the application to an EAR file
1. Select the ItsoClaim project .

2. Select File →Export.

3. Select the EAR file as the destination, click Next.

4. Click Browse to locate the target directory. By default, the output file name
populated is ItsoClaim, to distinguish it from the existing EAR. Change the file
name to ItsoClaimWS and click Save.

5. ItsoClaimWS.ear will be generated in the target directory.

Install the EAR file on WebSphere Application Server
1. Open the WebSphere administrative console using a Web browser with the

URL:

http://<server-hostname>:9090/admin

2. Log in with your user ID.

3. Select Applications →Install New Application.

4. Prepare for the application install interface.

 Chapter 12. Building the claims scenario 271

Figure 12-27 Installing ItsoClaimWS

a. Specify the full path name of the enterprise application file (EAR file), then
click Next.

b. Check Generate Default Bindings.

c. Ensure other selections are defaults, as follows:

• Do not specify a unique prefix for beans
• Do not override existing bindings
• Use the default virtual host name for Web module, default_host

d. Click Next

5. Install the new application interface using the following steps.

272 WebSphere and .Net Interoperability Using Web Services

Figure 12-28 Installing ItsoclaimWS - step 1 - deploy as Web service

a. Phase 1: first, make sure the following steps are taken:

• Change the Application Name to ItsoClaimWS.
• Check Deploy WebServices.
• Ensure that Distribute Application and Create MBeans for

Resources are checked.

b. Phase 2: JNDI Name will be selected by default, so click Next.

c. Phase 3: Virtual Host will be default_host; click Next.

d. Phase 4: modules will be mapped to server1 by default; click Next.

e. Phase 5: there will be no security role; click Next.

f. Phase 6: no change; click Next.

g. Phase 7: in this step, the interface will show a summary of installation
options as shown in Figure 12-29 on page 274; click Finish.

 Chapter 12. Building the claims scenario 273

Figure 12-29 Summary of installation options

6. A success message, Application ItsoClaimWS installed Successfully, will
be displayed along with the link to save the Master Configuration; click Save
to Master Configuration.

Figure 12-30 Save ItsocClaimWS to the master configuration

274 WebSphere and .Net Interoperability Using Web Services

7. In the next interface, changed items can be viewed after expanding View
items with changes; click Save.

8. Start the application as follows.

Figure 12-31 Starting ItsoClaimWS

a. Select Enterprise Application.
b. Check ItsoClaimWS.
c. Click Start.

Now the Web service is ready to be consumed by client interface.

Test the deployed Web service using Web Service Explorer
The deployed Web service can be tested using Web Service Explorer in the
development environment with WebSphere Application Server on the Test
Server.

1. Follow instructions up to step 2 as described in 12.1.6, “Test the created Web
service” on page 269.

2. Select Add to add a new Endpoint server host. Select the new Endpoint as
http://<host>:9080/ItsoClaimRouterWeb/services/LGIClaimRegistration

where <host> is the server with WebSphere Application Server on which the
Web service is being deployed.

3. Select the method to test, for instance, findCustomer and then select
Endpoint with the WebSphere Application Server host.

Successful execution of the test cases will verify the deployment onto
WebSphere Application Server and give confidence that the Web service can
be used by other Web service clients.

 Chapter 12. Building the claims scenario 275

12.2 Building the scenario for Windows Server 2003
The next stage in the example is to create the Microsoft .Net Web service for the
DCI register claim application. As with the LGI example, the register claim
application is already implemented and in use with DCI’s own Web site. The
merger task is to wrap the existing application classes in a Web service and
deploy it onto the Windows 2003 server.

12.2.1 Prerequisites to run the Web service application
The environment we set up ran the Web service application using Microsoft
Visual Studio .Net 2003 on a Windows 2003 server. We used IIS V6.0 on an IBM
ThinkCenter with 1GHz CPU, 1GB of main memory and 12 GB of DASD. The
scenario may run on other Windows configurations, but we only tested on
Windows Server 2003.

12.2.2 Create the Web Service
In Microsoft Visual Studio .Net 2003, we create an ASP .NET Web service
project before we can create the Web service class and add other existing
classes from other visual studio project. Start up the Microsoft Visual Studio .Net
2003.

To create a new project:

1. Select File → New in the menu at the top.

2. Select Visual C# project on the left-hand side.

3. Select ASP.NET Web Service on the right-hand side.

4. Rename the Web Service project name in Location from
http://localhost/WebService1 to http://localhost/ItsoClaim.

5. Click OK.

276 WebSphere and .Net Interoperability Using Web Services

Figure 12-32 Create New Project for ItsoClaim ASP.NET Web service using C#1

Figure 12-33 ItsoClaim.asmx.cs [Design] with default Service1 class name

The Web service page opens up and has the extension .asmx.cs[Design] as
shown in Figure 12-33. The screen does not show any code, so we need to click
the line Click here to switch to code view.

Select all the default generated code in ItsoClaim.asmx and replace it with the
code in Itsoclaimpaste.txt which was prepared earlier and is shown in
Example 12-1 on page 278.

The example includes two Web services that call the existing application classes:

� findCustomer (String customerID, String policyID) returns Boolean

� registerClaim (String customerID, String policyID, DateTime accidentDate,
String accidentDescription, String [] involvedCars) returns claim code of type
String

1 Screen shot(s) reprinted by permission from Microsoft Corporation.

 Chapter 12. Building the claims scenario 277

Example 12-1 ItsoClaim.asmx

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
namespace ItsoClaim {

public class ItsoClaim: System.Web.Services.WebService{
public ItsoClaim(){

InitializeComponent();
}
#region Component Designer generated code

private IContainer components = null;
private void InitializeComponent(){
}
protected override void Dispose(bool disposing){

if(disposing && components != null){
components.Dispose();

}
base.Dispose(disposing);

}
#endregion
[WebMethod]
public Boolean findCustomer(String customerID,String policyID){

CustomerDataAccess customerObj = new CustomerDataAccess();
try {

return customerObj.getCustomer(customerID, policyID);
}
catch (DataException de){

throw new ClaimException(de.Message);
}

}
[WebMethod]
public string registerClaim(String customerID,String policyID, DateTime
accidentDate, String accidentDescription, String [] involvedCars){

ClaimDataAccess claimObj = new ClaimDataAccess(customerID, policyID,
accidentDate, accidentDescription, involvedCars);

try {
return claimObj.getClaimCode();

}
catch (DataException de1){

throw new ClaimException(de1.Message);
}

}
}}

278 WebSphere and .Net Interoperability Using Web Services

Rename the file from Service1.asmx to ItsoClaim.asmx as in Figure 12-34.

Figure 12-34 Rename Web Service

12.2.3 Import the existing classes
The next step is to import the existing application classes into the project.

Import the Existing ClaimDataAccess class
We encapsulate the access to the database by using the ClaimDataClass, even
though in the example we are hard-coding the data. We could change the class
to use a database without needing to change the Web service class.The
ClaimDataAccess class already exists and is imported from the
DirectCarInsure.com company, which is being acquired by LGI as described in
the scenario use case.

To import an existing class into the project:

1. Select File →Add Existing Item from the top bar as in Figure 12-35 on
page 280.

 Chapter 12. Building the claims scenario 279

Figure 12-35 Select File and Add Existing Item

2. Navigate to the directory containing the file.
3. Select the file ClaimDataAccess as shown in Figure 12-36.
4. Click Open.

Figure 12-36 Import an existing class to the project

Example 12-2 shows the ClaimDataAccess class. We will instantiate the
ClaimDataAccess class in the Web service class, ItsoClaim.asmx. The returned
claim code is the concatenation of the CustomerID, PolicyID and AccidentDate.

Example 12-2 Existing ClaimDataAccess class

using System.Text;
namespace ItsoClaim {

public class ClaimDataAccess {
private String l_customerID;
private String l_policyID;
private DateTime l_accidentDate;
private String l_accidentDesc;
private String [] l_involvedCars = null;
public ClaimDataAccess(String customerID, String policyID, DateTime

accidentDate,String accidentDesc, String [] involvedCars) {
l_customerID = customerID;
l_policyID = policyID;
l_accidentDate = accidentDate;

280 WebSphere and .Net Interoperability Using Web Services

l_accidentDesc = accidentDesc;
l_involvedCars = new String[involvedCars.Length];
for (int i = 0; i < involvedCars.Length; i++) {

l_involvedCars[i] = involvedCars[i];
}

}
public String getClaimCode() {

 StringBuilder claimCode = new StringBuilder(l_customerID);
 claimCode.Append(l_policyID);
 claimCode.Append(l_accidentDate.ToShortDateString());
 return claimCode.ToString();
}

}
}

Import the Existing CustomerDataAccess class
Similarly, we import the existing Customer Data class by adding an existing item
into the project. We can modify the class without affecting the Web service class
later. A DataException is thrown when the Customer ID is longer than eight
characters. Our sample test data is hard-coded in the CustomerDataAccess
class below.

Example 12-3 Existing CustomerDataAccess class

using System;
namespace ItsoClaim {

public class CustomerDataAccess {
public CustomerDataAccess() {
}
public Boolean getCustomer(String custID, String polID) {

DataException de = new DataException("Invalid Customer");
if (custID.Equals("ABC1234") && polID.Equals("1234567890"))

return true;
else
if (custID.Equals("ABC1235") && polID.Equals("1234567891"))

return true;
else
if (custID.Equals("ABC1236") && polID.Equals("1234567892"))

return true;
else
if (custID.Length > 8)

throw de;
 else

return false;
}

}}

 Chapter 12. Building the claims scenario 281

Import DataException and ClaimException classes
We use DataException to simulate data access errors and ClaimException to
simulate exception generated by the Web service, separating the data layer from
the business layer. We extend the Exception class and simply call the
constructors of the parent class.

Example 12-4 Existing DataException class

using System;
namespace ItsoClaim {

public class DataException:Exception {
public DataException() : base(){}
public DataException (String msg) : base(msg) {}

}
}

The ClaimException class, just like the DataException class, can be expanded,
to simulate an exception generated by the Web service..

Example 12-5 Existing ClaimException class

using System;
namespace ItsoClaim {

public class ClaimException:Exception {
public ClaimException():base() {}
public ClaimException(String msg):base(msg) {}

}
}

12.2.4 Build the Web service
The Build process generates proxy classes and the WSDL file that describes the
Web service.

To build the project:

1. Select Build from the top bar.
2. Select Build Solution.

Microsoft .Net only uses Soap Document/Literal binding in the WSDL
description. Even though WS-I profile 1.1 allows RPC/Literal binding,
WebSphere Studio Application Developer 5.1.2, by default, generates
Document/Literal binding in the WSDL description.

282 WebSphere and .Net Interoperability Using Web Services

Figure 12-37 Build the Web Service

12.2.5 Microsoft Internet Information Services (IIS)
When Microsoft Visual Studio .Net 2003 rebuilds the Web service, it also
publishes the Web service to the Internet Information Server, which resides in the
c:\inetpub\wwwroot directory, as shown in Figure 12-38 on page 284. We are
using Internet Information Services V6.0 with Windows 2003 Server. Internet
Information Services can be separately installed by adding the Application
Server Windows components in Windows 2003. There are default Web sites and
virtual directories that are created when Internet Information Services are
installed. We can also use the Internet Information Services Manager to create a
new Web site or virtual directory.

 Chapter 12. Building the claims scenario 283

Figure 12-38 Inetpub/wwwroot Internet Information Services directory

Open IIS Manager
To start the Internet Information Services Manager:

1. Click the Start menu in the bottom left corner of the desktop.
2. Select All Programs.
3. Select Administrative Tools.
4. Select Internet Service (IIS) Manager.

Alternatively, to start the Internet Information Services Manager:

1. Click the Start menu.
2. Select Run.
3. Type INETMGR.
4. Click OK.

284 WebSphere and .Net Interoperability Using Web Services

Figure 12-39 IIS Manager shows ItsoClaim on the DefaultAppPool and DefaultWebSite

If the IIS Manager does not show ItsoClaim on the DefaultAppPool and Default
Web Site, right-click DefaultAppPoll to select Refresh. Similarly, right-click
Default Web Site to select Refresh.

12.2.6 Create Microsoft .Net Test Client
The default Microsoft Visual Studio .Net 2003 Test Client does not allow testing
of applications with DateTime fields. So, we create a simple test client to make
sure we can access the Web Service on Windows 2003 first. We create an
ASP.NET Web form with labels and buttons. The test involves hard-coding the
CustomerID and PolicyID. We also change it to have the length of the
CustomerID exceed eight characters to generate an exception.

To create the test client:

1. Select File →New →Project.

Figure 12-40 Create ASP.NET Web Application to test Web service

2. Select Visual C# Project in the left window pane.

 Chapter 12. Building the claims scenario 285

3. Select ASP.NET Web Application in the right window pane.

Figure 12-41 Rename Location to http://localhost/testItsoclaim

4. Change the location name to http://localhost/testItsoclaim.
5. Click OK.

Figure 12-42 Toolbox containing buttons, labels and other widgets

6. Drag and drop two buttons and four labels from the toolbox on the left bar as
in Figure 12-42.

7. Create the Web form as in Figure 12-43 on page 287.

286 WebSphere and .Net Interoperability Using Web Services

Figure 12-43 testItsoclaim form designer to test the Web service

8. Rename button1’s ID and Text in the Properties window (Figure 12-44) to
getCustomer.

9. Rename button2’s ID and Text in the Properties window to claim.

10.Rename label1’s Text in the Properties window to True or False.

11.Rename label2’s Text in the Properties window to Claim Code.

12.Rename label3’s ID and Text in the Properties window to errorMsg1.

13.Rename label4’s ID and Text in the Properties window to errorMsg2.

Figure 12-44 Properties window where we rename ID and Text of button and label

 Chapter 12. Building the claims scenario 287

Figure 12-45 Right click Reference and select Add Web Reference

14.To add a Web reference to the ItsoClaim Web service, right-click References
to select Add Web Reference in the Solution Explorer in the right pane, as
shown in Figure 12-45.

Figure 12-46 Add Web Reference

15.Select Web services on local machine as shown in Figure 12-46.

288 WebSphere and .Net Interoperability Using Web Services

Figure 12-47 List of Web services on local machine

16.Select ItsoClaim from the list of Web services (Figure 12-47)

Figure 12-48 List of methods in ItsoClaim Web service

17.Click Add Reference.

 Chapter 12. Building the claims scenario 289

Next, we have to add the code behind the Web form.

18.Double-click the getCustomer button in the form designer to view and edit
the codes.

19.Select and cut the getCustomer() codes from the testItsoClaim.txt and paste
it within the getCustomer_Click() method.

20.Similarly, go back to the form designer and double-click the Claim button to
view and edit the codes.

21.Select and cut the claim codes from testItsoClaim.txt and paste them within
the claim_Click() method.

Figure 12-49 Class View shows the Web service proxy class

22.Build the solution.

Figure 12-49 shows that the Web service proxy class is localhost.ItsoClaim.

The codes that accompany the window are as follows:

Example 12-6 testItsoClaim.aspx.cs test client codes

namespace testItsoClaim {
public class WebForm1 : System.Web.UI.Page {

//.....Microsoft Visual Studio .Net 2003 generates extra codes here
// Cut and paste the testItsoClaim.txt and paste it within WebForm1 class
// below other VS .NET automatically generated codes

290 WebSphere and .Net Interoperability Using Web Services

private void getCustomer_Click(object sender, System.EventArgs e) {
localhost.ItsoClaim myClaim = new localhost.ItsoClaim();
try {

getCustomer.Text=myClaim.findCustomer("ABC1234",
"1234567890").ToString();

}
catch (Exception exc) {

errorMsg1.Text = "You have got an ERROR";
errorMsg2.Text = exc.Message;

}
}
private void claim_Click(object sender, System.EventArgs e) {

String [] myArray = new String[] {"me","you","him"};
DateTime myDate = new DateTime(2004,09,26);

 localhost.ItsoClaim myClaim = new localhost.ItsoClaim();
claim.Text=myClaim.registerClaim("ABC1234","1234567890",

DateTime.Today, "Just an accident",myArray);
}

}
}

To run the Test client, click Debug → Start Without Debugging in the top menu
bar.

Figure 12-50 Test result when Customer ID is ABCD1234, policy ID is 1234567890

Click the getCustomer button and Claim button. Figure 12-50 shows the result
screen indicating that the test passes and there is no exception.

 Chapter 12. Building the claims scenario 291

Stop the application. Go back to the getCustomer_Click() method in the editor
and change the Customer ID to ABC1234999 then run the application again. Click
the getCustomer button and you should get an exception as shown in
Figure 12-51.

Figure 12-51 Exception is thrown when CustomerID is greater than 8 characters

We get the exception when we code the customer ID such that it is longer than
eight characters. Figure 12-51 indicates that an exception has occurred because
the customer ID is longer than eight characters. In a complex application, the
exception can be the result of database access failure due to the record locking
or the database server not running.

12.2.7 Summary
We have created the Web service class and imported its existing supporting
classes. The Rebuild generates the Web service proxies and the WSDL file. We
created the simple Test client to make sure that the Web service runs properly in
the Microsoft .Net platform. We also briefly touched on the Microsoft Internet
Information Services where Microsoft Visual Studio .Net 2003 automatically
deploys its Web service and through which we can confirm our Web applications
are correctly deployed.

292 WebSphere and .Net Interoperability Using Web Services

12.3 Building the Web services clients
Now that we have built a and test wrappers for the insurance claims application in
Microsoft .Net and WebSphere, we can build the new Web application that will
make use of the two Web services.

A Java 2 Enterprise Edition Web service client, also known as a service
consumer or service requestor, is an application component acting as a client for
a specific Web service. As in all classical remoting implementations, such as
CORBA or RMI, the Web service client component is implemented as a proxy
object able to wrap the remote invocation to the rest of the business logic.

As already described in the previous chapters, a Web service client
communicates with the Web service provider using SOAP messages. Both the
SOAP request and SOAP response messages must follow the format specified in
the WSDL file associated to the Web service. The WSDL file gives a complete
set of specifications about the information to be put in the SOAP request and
response, including all information regarding operations exposed by the Web
service, input and output variables, variable types, document encoding type and,
last but not least, the Web service location. Therefore, the WSDL file is both
necessary and sufficient information to develop a client for the corresponding
Web service.

Both WebSphere and Microsoft .Net platforms provide automatic tools for
generating a proxy class wrapping a Web service. After building the proxy, each
application having to access a Web service need only instantiate the proxy class
and invoke the required operation on it.

In this section, we show how it is possible to build two WebSphere Web service
clients: one for a WebSphere Web service and the other one for a Microsoft .Net
Web service. The Web services we want to invoke are the same as we created in
the previous two sections.

In both cases, we start from the WSDL file provided by the Web service. We can
opt to download the WSDL file and copy it in the WebSphere Studio Application
Developer workspace or, if we can remotely access the WSDL file from the
development environment, we can simply provide the remote URI address when
required by the Web service proxy wizard. The only advantage in copying the
WDSL file in the local workspace is that we can test it using the Web Service
Explorer even before developing any code.

Note: More information about how to use WebSphere Studio Application
Developer to build an test Web services client or proxy can be found in the
redbook WebSphere Version 5.1 Application Developer 5.1.1 Web Services
Handbook, SG24-6891-01.

 Chapter 12. Building the claims scenario 293

In this example, we suppose that WSDL files have been copied to the local disk
and that the Web service client is required to be part of the Web application that
will give LGI’s and DCI’s combined customers a single Web interface to register
an insurance claim.

Rather than build the entire Web application, we will only build the Java code that
is going to act as a Web services client to the LGI and DCI Web services. The
Java code will be part of the Web application’s servlet. To test the code in
isolation, we will build it as a simple Java client. We will not build the servlet or
the rest of the Web application.

12.3.1 Web service client for the WebSphere Web service
To create a proxy class and all other related classes, the same steps are required
for both a WebSphere Web service and a Microsoft .Net Web service.
Nevertheless, since the WSDL files are different, the results are also different
and must be individually discussed before a comparison can be made. Steps to
create a client for a WebSphere Web service are detailed below:

1. Open a new workspace in the WebSphere Studio Application Developer tool
and set the Java perspective as a current active perspective. If the
WebSphere Studio Application Developer tool has already been used to
develop the Web service, a new workspace is preferable, instead of having
the Web service code in the same workspace, in order to show the effective
execution of a remote object.

2. Create a new Java project:

a. Select File → New → Project → Java → Java Project and click Next.

b. Specify ItsoClaimWasWSClient as the project name and click Next.

c. Click Add Folder to open the Source Folder Selection window and click
Create New Folder.

d. Specify source as folder name and click OK.

e. Click OK to close the Source Folder Selection window.

f. Click Yes to the following question.

g. Click Finish.

3. Import the LGIClaimRegistration.wsdl file in the root project directory (as
stated before, it is not mandatory to have a local WSDL file).

a. Select the ItsoClaimWasWSClient.

b. Select File → Import.

c. Select File system as the input source and click Next.

d. Click Browse to select the directory where the WSDL file is located.

294 WebSphere and .Net Interoperability Using Web Services

e. Select the WSDL file in the left window under the Browse button and click
Finish. If the Web Services server is deployed on a different machine, be
sure that the address location in the WSDL file refers correctly to the
remote machine; otherwise, the address can be replaced with the correct
one.

Figure 12-52 Importing WSDL file into Web service client project

f. Now the Web Service can be tested, even before creating the proxy:
select the WSDL file, open the context menu and select Web Services →
Test with Web Services Explorer.

4. Now we have two choices to run the Web service client wizard:

– Select File → New → Other → Web Services → Web Service Client
and click Next.

or alternatively:

 Chapter 12. Building the claims scenario 295

– Select the WSDL file, open the context menu and click Web Services →
Generate Client.

5. Select Java proxy as the client proxy type and click Next (do not select Test
the generated proxy).

6. Verify that the Client project is ItsoClaimWasWSClient and click .

7. Click Browse to select the WSDL file if not yet selected and click Next.

8. Click Finish.

The final result is shown in Figure 12-53.

Figure 12-53 Web service client Java classes for a WebSphere Web service

Besides the Proxy class, four other proxy classes have been generated to
support the proxy invocation:

� Service interface LGIClaimRegistrationService - defines the service methods
of the locator class (for example, retrieving the SEI)

� Service locator class LGIClaimRegistrationServiceLocator - implements the
service interface (provides access to the SEI)

Tip: Make sure the plug-ins shown in Figure 12-53 are listed; they should load
automatically. If not, check that you have selected the WebSphere 5.1 test
server as your target server correctly, either as a default under Preferences, or
as shown in Figure 12-7 on page 257.

296 WebSphere and .Net Interoperability Using Web Services

� Service endpoint interface (SEI) LGIClaimRegistration - defines the method
signatures of the Web service

� Binding stub LGIClaimRegistrationSoapBindingStub - implements the SEI
(makes the actual calls to the Web service)

The Claim Exception class is automatically generated to support the SOAP fault
described in the WSDL files.

At runtime, the client instantiates the service locator class, calls it to retrieve the
SEI (actually the binding stub), then calls the SEI to invoke the Web service.
Figure 12-54 shows the calling sequence in a Java implementation.

1. The client instantiates the service locator.

2. The client calls the service locator to retrieve the SEI (an instance of the client
stub that implements the SEI is returned).

3. The client invokes a Web service through the SEI.

Figure 12-54 JAX-RPC static client calling sequence

If we want to test the generated code invoking a remote Web service method, we
must simply create an instance of the proxy and invoke the corresponding
method exposed by the proxy object. Proxy invocation can be done from a Java
class, an EJB, a Java Servlet or any other Java component, even a JSP. For
example, if we want to invoke the findCustomer method, the client code should
be the one listed in the following example:

Example 12-7 Web service proxy invocation from a Java client

LGIClaimRegistrationProxy proxy = new LGIClaimRegistrationProxy();
boolean result = proxy.findCustomer(aCustomerID, aPolicyID);

 Chapter 12. Building the claims scenario 297

where both aCustomerID and aPolicyID are the input variables. Input variable
values and related expected results are discussed in the section dealing with the
creation of the Web service.

The additional material provided with this redbook includes a complete Java
class to test the Web service. To import the Java class, follow these steps:

1. Select the source folder in the Java project.

2. Select File → Import.

3. Select File system as the input source and click Next.

4. Click Browse to select the WSWASClient directory located in the additional
material root directory and click OK.

5. Check the WSWASClient in the left window under the Browse button and
click Finish.

The itso.examples.claim.test package is created under the source folder
containing the TestWASWebServiceJava class. The new package and class are
shown in Figure 12-55.

Figure 12-55 Test Web services client class

You must run the class as a Java application, providing the inputs for the method
invocation. Running the Java class without any input or help about how to
provide the inputs is displayed in the console.

To run the class, follow these steps:

1. Select the class.

298 WebSphere and .Net Interoperability Using Web Services

Figure 12-56 Starting the test client

2. Click Run → Run... as in Figure 12-56.
3. Select Java Application in the left side navigator.
4. Click New.
5. A new tabbed panel opens on the right side. Select the Arguments tab.

Figure 12-57 Supply the parameters to the test Web service

 Chapter 12. Building the claims scenario 299

6. In the program arguments text window, insert for example the following text: 1
ABC123 P00245.

7. Click Run.

The client starts and the console reports the message as shown in Figure 12-58:

Figure 12-58 Console message after the execution of the test client

12.3.2 Web service client for the Microsoft .Net Web service
To create a client for a Microsoft .Net Web service, follow these steps:

1. Open the WebSphere Studio Application Developer tool and set the Java
perspective as the current active perspective.

2. Create a new Java project:

a. Select File → New → Project → Java → Java Project and click Next.

b. Specify ItsoClaimDotNetWSClient as the project name and click Next.

c. Click Add Folder to open the Source Folder Selection window and click
Create New Folder.

d. Specify source as the folder name and click Ok.

e. Click Ok to close the Source Folder Selection window.

f. Click Yes to the following question.

g. Click Finish.

3. Import the itsoclaim.wsdl file in the root project directory. As stated before, it is
not mandatory to have a local WSDL file; if the local file is missing, follow
steps from a. to f., otherwise skip to step g.

a. Be sure you have the Microsoft .Net Web service up and running.

b. Be sure you have the service endpoint. We assume it is:
http://dotnethost.itso.ibm.com/ItsoClaim/ItsoClaim.asmx.

c. Open a Web browser and go to the following link:

http://dotnethost.itso.ibm.com/ItsoClaim/ItsoClaim.asmx?WSDL

300 WebSphere and .Net Interoperability Using Web Services

http://dotnethost.itso.ibm.com/ItsoClaim/ItsoClaim.asmx?WSDL

d. The WSDL file is shown in the browser.

e. Select File → Save As... to save the WSDL file in the local disk.

f. Select ItsoClaimDotNetWSClient.

g. Select File → Import.

h. Select File system as the input source and click Next.

i. Click Browse to select the directory where the WSDL file is located.

j. Select the WSDL file in the left window under the Browse button and click
Finish. If the Web Services server is deployed on a different machine, be
sure that the address location in the WSDL file refers correctly to the
remote machine; otherwise, the address can be replaced with the correct
one.

k. Now the Web service can be tested, even before creating the proxy: select
the WSDL file, open the context menu and select Web Services → Test
with Web Services Explorer.

4. Now we have two choices to run the Web service client wizard:

– Select File → New → Other → Web Services → Web Service Client
and click Next.

or alternatively:

– Select the WSDL file, open the context menu and click Web Services →
Generate Client.

5. Select Java proxy as the client proxy type and click Next (do not select Test
the generated proxy).

6. Verify that the Client project is ItsoClaimWasWSClient and click Next.

7. Click Browse to select the WSDL file if not yet selected and click Next.

1. Click Finish.

The final result is shown in Figure 12-59 on page 302.

 Chapter 12. Building the claims scenario 301

Figure 12-59 Web service client Java classes for a 0738492302 Microsoft .Net Web
service

As in the previous example, the only code needed in the client application to
invoke the findCustomer method is:

Example 12-8 Web service Proxy invocation from a Java client

ItsoClaimSoapProxy proxy = new ItsoClaimSoapProxy();
boolean result = proxy.findCustomer(customerID,policyID);

where both aCustomerID and aPolicyID are the input variables. Inputs variable
values and related expected results are discussed in the section dealing with the
creation of the Web service.

The additional material provided with this redbook includes a complete Java
class to test the Web service. To import the Java class, follow these steps:

1. Select the source folder in the Java project.

2. Select File → Import.

3. Select File system as the input source and click Next.

4. Click Browse to select the WSDotNETClient directory located in the
additional material root directory and click OK.

5. Check the WSDotNETClient in the left window under the Browse button and
click Finish.

302 WebSphere and .Net Interoperability Using Web Services

The itso.examples.claim.test package is created under the source folder. It
contains the TestDotNETWebServiceJava class. You must run the class as Java
application, providing the inputs for the method invocation. Running the Java
class without any input ann help about how to provide the inputs is displayed in
the console.

12.3.3 Microsoft .Net
The steps required to build a Web service client in Microsoft Visual Studio .Net
2003 are the same as already described to build the test client for the Microsoft
.Net Web service.

12.3.4 Differences between the two Web services and conclusions
The main differences between the Microsoft .Net generated WSDL file and the
WebSphere one are:

� Exception handling
� Object array management
� Parameter multiplicity specification

For each difference, we provide a specific description in the following sections.

Exception handling
Business logic component methods belonging to both development
environments throw a ClaimException to report some errors that may have
occurred during the method execution.

No SOAP fault information is included in the Microsoft .Net WSDL file. The lack
of detail is probably related to the fact that WSDL files generated in Microsoft
.Net start from a C# class; since C# does not have an analog of the Java throws
clause in method signatures, the method signature does not contain any
information about exceptions thrown during the method execution.

In the WebSphere Studio generated WSDL file, a complex type is defined to map
the ClaimException and the SOAP fault is associated with this type. The
following example shows the exception handling in the WebSphere Studio
generated WSDL file:

Example 12-9 Exception handling in the WebSphere Studio generated WSDL file

......
<wsdl:types>
.....

<schema elementFormDefault="qualified"........>
<complexType name="ClaimException">

 Chapter 12. Building the claims scenario 303

<sequence>
<element name="message" nillable="true" type="xsd:string" />
</sequence>

</complexType>
<element name="ClaimException" nillable="true" type="tns2:ClaimException"
/>

 </schema>
</wsdl:types>
....
<wsdl:message name="ClaimException">

<wsdl:part element="tns2:ClaimException" name="fault" />
</wsdl:message>
.....
<wsdl:portType name="LGIClaimRegistration">

<wsdl:operation name="findCustomer">
<wsdl:input message="intf:findCustomerRequest"
name="findCustomerRequest" />
<wsdl:output message="intf:findCustomerResponse"
name="findCustomerResponse" />
<wsdl:fault message="intf:ClaimException" name="ClaimException" />

</wsdl:operation>
<wsdl:operation name="registerClaim">

<wsdl:input message="intf:registerClaimRequest"
name="registerClaimRequest" />
<wsdl:output message="intf:registerClaimResponse"
name="registerClaimResponse" />
<wsdl:fault message="intf:ClaimException" name="ClaimException" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="LGIClaimRegistrationSoapBinding"
type="intf:LGIClaimRegistration">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="findCustomer">

<wsdlsoap:operation SOAPACTION="" />
<wsdl:input name="findCustomerRequest">

<wsdlsoap:body use="literal" />
</wsdl:input>
<wsdl:output name="findCustomerResponse">

<wsdlsoap:body use="literal" />
</wsdl:output>
<wsdl:fault name="ClaimException">

<wsdlsoap:fault name="ClaimException" use="literal" />
</wsdl:fault>

</wsdl:operation>
<wsdl:operation name="registerClaim">

<wsdlsoap:operation SOAPACTION="" />
<wsdl:input name="registerClaimRequest">

<wsdlsoap:body use="literal" />

304 WebSphere and .Net Interoperability Using Web Services

</wsdl:input>
<wsdl:output name="registerClaimResponse">

<wsdlsoap:body use="literal" />
</wsdl:output>
<wsdl:fault name="ClaimException">

<wsdlsoap:fault name="ClaimException" use="literal" />
</wsdl:fault>

</wsdl:operation>
</wsdl:binding>
.......

Starting from the previously described WSDL file, the Web service proxy wizard
generates an itso.examples.claim.exception package, a ClaimException class
and all other related classes needed for the SOAP serialization and
deserialization of the ClaimException itself.

The SoapBindingStub class which wraps the methods exposed by the Web
service throws both a java.rmi.RemoteException and a
itso.examples.claim.exception.ClaimException.

Part of the code implementing the generated method is shown in the following
example:

Example 12-10 Exception handling in the stub generated from a WebSphere WSDL file

try {
......

} catch (com.ibm.ws.webservices.engine.WebServicesFault wsf) {
Exception e = wsf.getUserException();
if (e != null) {

if (e instanceof itso.examples.claim.exception.ClaimException) {
throw (itso.examples.claim.exception.ClaimException) e;

}
}
throw wsf;

}

If we compare the code listed in Example 12-10 with the corresponding code in
Example 12-11 on page 306 generated from the Microsoft .Net WSDL file, we
can observe that in the second case, the only handled exception is the standard
WebServicesFault. Both the findCustomer and registerClaim methods throw only
a java.rmi.RemoteException.

 Chapter 12. Building the claims scenario 305

Example 12-11 Exception handling in the stub generated from a Microsoft .Net WSDL file

try {
.....

} catch (com.ibm.ws.webservices.engine.WebServicesFault wsf) {
throw wsf;

}

The conclusion is that it is not possible, while developing a Microsoft .Net Web
service, to generate specific exceptions with the client. Microsoft .Net Studio
does not add any SOAP fault message in the WSDL files and all exceptions
thrown by the Web service are managed as simple SOAP server fault code. This
different implementation of the exception management in the SOAP message,
however, does not impact the interoperability between the two platforms.

To produce a detailed SOAP fault report from a Microsoft Web service requires
some coding. Some good advice is given in the MSDN article “Using SOAP
Faults” (Scott Seely, Microsoft Corporation, September 20, 2002) found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html
/service09172002.asp

Object array management
In the registerClaim method, an array of strings is required as an input
parameter. In both cases, the Web service source code is developed using the
basic String[] type, but, if we compare the two generated WSDL files, we can find
a different parameter declaration approach.

The WebSphere Studio generated WSDL file uses the basic type xsd:string with
the maxOccurs property set to unbounded; the related part of the WSDL file is
shown in Example 12-12.

Example 12-12 Object array type specification in WebSphere Studio generated WSDL
file

...
<element maxOccurs="unbounded" name="involvedCars" type="xsd:string"/>

....

The Microsoft Visual Studio .Net 2003 generated WSDL file, instead, uses the
complex type ArrayOfString as shown in Example 12-13 on page 307.

306 WebSphere and .Net Interoperability Using Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp

Example 12-13 Object array type specification in Microsoft Visual Studio .Net 2003
generated WSDL file

...
<s:element name="registerClaim">

<s:complexType>
<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="customerID"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="policyID"
type="s:string" />
<s:element minOccurs="1" maxOccurs="1" name="accidentDate"
type="s:dateTime" />
<s:element minOccurs="0" maxOccurs="1" name="accidentDescription"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="involvedCars"
type="s0:ArrayOfString" />

</s:sequence>
</s:complexType>

</s:element>
<s:complexType name="ArrayOfString">

<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="string"
nillable="true" type="s:string" />

</s:sequence>
</s:complexType>
...

Starting from the Microsoft Visual Studio .Net 2003 generated WSDL file, the
WebSphere Studio wizard generates an ArrayOfString class and all other related
classes used to manage SOAP serialization and deserialization; this means that
ArrayOfString is managed as a non-standard object.

The difference in the SOAP request is shown in the following two examples
where Example 12-14 refers to the SOAP request to the WebSphere Web
service while Example 12-15 on page 308 refers to the SOAP request to the
Microsoft .Net Web service.

Example 12-14 SOAP request to the WebSphere Web service

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<registerClaim xmlns="http://ejb.claim.examples.itso">

<customerID>ABC123</customerID>
<policyID>P00245</policyID>

 Chapter 12. Building the claims scenario 307

<accidentDate>2004-09-26T04:00:00.000Z</accidentDate>
<accidentDescription>Car crash</accidentDescription>
<involvedCars>NC-SH1</involvedCars>
<involvedCars>SA-NUM2-00</involvedCars>
<involvedCars>DH-CICS3</involvedCars>

</registerClaim>
</soapenv:Body>

</soapenv:Envelope>

Example 12-15 SOAP request to the Microsoft .Net Web Service

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<registerClaim mlns="http://tempuri.org/">
<customerID>AAAA</customerID>
<policyID>BBBBB</policyID>
<accidentDate>2004-09-26T04:00:00.000Z</accidentDate>
<accidentDescription>CCCCC</accidentDescription>
<involvedCars>

<string>SH1</string>
<string>NUM2</string>
<string>CICS3</string>

</involvedCars>
</registerClaim>

</soapenv:Body>
</soapenv:Envelope>

According to section 4.3.3 of the WS-I BasicProfile 1.1, we found the following
recommendation (see R2112 in Table 8-5 on page 152).

� In a description, elements should not be named using the convention
ArrayOfXXX

� The correct way to define arrays is to define a basic type with
maxoccurs=unbounded

There is no specific unrespected MUST in the Microsoft .Net WSDL file and the
WebSphere Studio wizard is able to generate the correct client; the
interoperability is then guaranteed between the two platforms.

308 WebSphere and .Net Interoperability Using Web Services

Parameter multiplicity specification
In both platform generated WSDL files, the methods’ input parameters are
considered optional: minoccurs is set to 0 in the Microsoft .Net WSDL file while
nillable is set to true for the WebSphere WSDL file.

The difference in type declaration does not influence the proxy generation wizard
in WebSphere Studio and Microsoft Visual Studio .Net 2003 and neither tool
shows any problem in generating the Web service proxy starting from a WSDL
file generated with a different platform.

We also tried a manual update of the WSDL file, forcing the value of minoccurs to
1 and the nillable to false. The aim was for a client to be able to raise an
exception before invoking a service if null values were set for mandatory inputs.
However, even if we regenerated the proxy, we were not able to obtain such a
behavior; the proxy generation is not influenced by these new values and we
were able to invoke the service even passing null values for mandatory inputs
and receiving an exception raised from the service. The lesson is that WSDL
definitions should not be taken as a guaranteed precondition of how a service
behaves. The author of a Web service must check input arguments, even invalid
values that are not allowed in the WSDL file.

 Chapter 12. Building the claims scenario 309

310 WebSphere and .Net Interoperability Using Web Services

Chapter 13. Web service interoperability
implementation guidance

This chapter provides some guidance when coding Web services consumer and
provider classes in both Microsoft .Net and WebSphere Studio Application
Developer. For a different perspective, also refer to:

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/ht
ml/wsinteroprecsibm-final.asp

13

© Copyright IBM Corp. 2005. All rights reserved. 311

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp

13.1 Web service interoperability guidance
During the course of development using WebSphere Studio Application
Developer 5.1.2 and Microsoft Visual Studio .Net 2003 (Microsoft .Net
Framework 1.1), we encountered some errors because the development tools
generate code assuming different naming conventions. Duplicate names for
classes in Microsoft Visual Studio .Net 2003 can become a problem when the
client proxy classes are generated in the WebSphere Studio Application
Developer.

13.2 WebSphere client
There are a number of changes that may need to be made when using WSDL
generated in Microsoft .Net to generate a Web services client using WebSphere
Studio Application Developer.

Duplicate Web service name
The first case is the generation of duplicate Web service names for namespaces
having same domain name in Microsoft .Net.

If we want to access more than one Microsoft .Net service within the same
WebSphere Web service client, we want to make sure that we use a unique
service name in Microsoft .Net or that the namespace does not have the same
domain name.

WebSphere Studio Application Developer 5.1.2 maps the domain portion of the
namespace into its package name, resulting in duplicate proxy classes for the
two Microsoft .Net services, as shown in Figure 13-1.

Figure 13-1 Clash of package names

For example, two Web services are named register.asmx, but are created in
different namespaces such as http://itso.ral.ibm.com/sa-h412/claims and

312 WebSphere and .Net Interoperability Using Web Services

http://itso.ral.ibm.com/sa-h412/assessors. Web Sphere Studio Application
Developer will generate proxy classes of register.java in the package
itso.ral.ibm.com, resulting in duplicate proxy classes. Only the first proxy class
will be kept and the second one will be lost.

Incorrect reference of namespace for array types
When we create two Web services (two .asmx) in Microsoft .Net project, a
common data type, such as the Customer class, is often shared between the
services. However, when we use an array of the Customer class as a parameter,
WebSphere Studio Application Developer puts the generated client proxy into
the shared package but binds the class to the first namespace of the Web
service for which the proxy client is generated. The proxy class generated for the
second Web service in WebSphere Studio Application Developer is then
incorrect.

We can either fix the problem in the proxy class by changing the namespace to
point to the correct one or we can generate the proxy classes for the first Web
service and then move the classes to a unique package by using the WebSphere
Studio Application Developer refactor function. When we generate the proxy
classes for the second Web service, we move the classes to another unique
package. We then edit the proxy classes referencing the array of Customer to
point to the right package.

dateTime comparison
A Microsoft .Net Web service having dateTime data type is deserialized into
java.util.Calendar in WebSphere Studio Application Developer. Using == to
compare this date to another date field that is defined in WebSphere Studio
Application Developer will not get the correct result of true, even when both date
values are the same. So, instead of using ==, we must use compareTo().

Array of class type as parameter
When consuming a Microsoft .Net Web service that requires an array argument,
we have to use the array type generated in the proxy classes by WebSphere
Studio Application Developer. If Microsoft .Net defines a method taking a
Customer array parameter Customer[], we cannot simply call the method by
passing Customer[] as argument. We have to instantiate the ArrayOfCustomer
type as it is generated in the proxy classes by WebSphere Studio Application
Developer. The correct coding is as shown in Example 13-1 on page 314.

 Chapter 13. Web service interoperability implementation guidance 313

Example 13-1 Proper coding for ArrayOfCustomer type instantiation

Customer[] customerArray = createCustomers();
ArrayOfCustomer mCustomer = new ArrayOfCustomer();
mCustomer.setMessageType(customerArray);
service.getCustomers(mCustomer);

Return array with null value or empty array
When a WebSphere client receives an array with null values or an empty array
from Microsoft .Net Web service, it will find a default message exists instead of a
null value.

13.3 WebSphere Web service
The following hints concern the behavior of WebSphere and WebSphere Studio
Application Developer, and do not specifically have to do with interoperability
with Microsoft .Net. However, the conventions may not be familiar to Microsoft
.Net programmers who are using WebSphere.

ClassCastException for two Web services with the same name
This issue concerns throwing ClassCastException for two Web services with the
same name across packages.

In WebSphere Studio Application Developer, even though two Web services with
the same name in different packages are accepted, they cause a
java.lang.ClassCastException during deployment. So, it is advisable to either
keep the Web service name unique across projects or only create one Web
service per project.

Case sensitivity problem in getter methods
When generating Web service classes, WebSphere Studio Application
Developer keeps to a convention of naming getter methods. Valid getter methods
are getCustomer() and getOrder(), and invalid method names are GetCustomer()
and GetCustomer().

In addition, do not use an underscore for method attributes, such as _customer_
or in method names, which would become, for example, the get_customer_()
getter method, resulting in a ClassNotFound exception. WebSphere Studio
Application Developer will generate and look for getCustomer() in its proxy
classes.

314 WebSphere and .Net Interoperability Using Web Services

Problem with Boolean getter method
When using a Boolean method attribute and generating Web services from the
EJB beans, be aware that WebSphere Studio Application Developer does not
generate getCustomerExist(), but instead generates isCustomerExist() in its
proxy classes.

13.4 Microsoft .Net client
There are a number of changes that may need to be made when using a
Microsoft .Net client to talk to a Web service generated in WebSphere Studio
Application Developer.

Return null date
When a Web service developed with WebSphere Studio Application Developer
returns a null date that is going to be used by a Web service client programmed
with Microsoft Visual Studio .Net 2003, the null date will generate a
System.Format.Exception whether or not the date field is within a class. In
WebSphere Studio Application Developer, java.util.Date and java.util.Calendar
are passed by reference and can have null as a value, but in Microsoft .Net,
System.DateTime is considered to be a value type and should not include null.

Return null Array
When a Web service created using WebSphere Studio Application Developer
returns a null array, Microsoft .Net treats the null as a null element, not as a null
array.

Return array with null values or empty array
When Microsoft .Net receives an array with null values or an empty array from a
Web service developed by WebSphere Studio Application Developer, it will find a
default message exists instead of a null value.

13.5 Summary
This chapter provides some implementation guidance for coding Web service
producers and consumers in both development environments. It is always best to
code one Web service per project to avoid name collision. However, sometimes,
there is a need to group more than one Web service class in one project. It is
helpful to pay attention to this guide in naming classes, passing parameters and
returning values of type array.

.

 Chapter 13. Web service interoperability implementation guidance 315

316 WebSphere and .Net Interoperability Using Web Services

Part 4 Appendixes

Part 4

© Copyright IBM Corp. 2005. All rights reserved. 317

318 WebSphere and .Net Interoperability Using Web Services

Appendix A. Installation and setup

This appendix provides instructions for installing the products to prepare the
WebSphere environment and Microsoft .Net environment as used in this
publication; these are:

� IBM WebSphere Application Server Version 5.1.0, Fixpack 5.1.1 and
Cumulative Fix 5.1.1.1

� IBM WebSphere Studio Application Developer 5.1.2

� IBM Universal Database DB2 Version 8.1

A

© Copyright IBM Corp. 2005. All rights reserved. 319

Installation planning for the WebSphere environment
This section provides installation planning information for the products to prepare
the WebSphere environment as used in this publication.

WebSphere Application Server V5.1.1.1 requirements
This is also known as WebSphere Application Server 5.1.1 (cumulative fix
pack 1).

IBM WebSphere Application Server has the following hardware and software
requirements. For updated information about the requirements, please refer to
the WebSphere InfoCenter and documentation:

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Hardware
Hardware requirements for Windows servers include:

� Intel® Pentium® processor at 500 MHz, or faster
� Minimum 600 MB free disk space for installation of Version 5.1.1.1
� Minimum 256 MB memory; 512 MB or more recommended
� CD-ROM drive
� Support for a communications adapter

Software
The installation requires the following software to be installed for a Windows
server:

� Windows NT® Server V4.0, SP 6a or later, Windows 2000 Server or
Advanced Server SP 3, Windows Server 2003, Windows XP Pro SP 1

� Netscape Communicator 4.79 or Microsoft Internet Explorer 5.5 SP 2 or 6.0

� Web browser that supports HTML 4 and CSS

For detailed hardware and software requirements, go to:

http://www-306.ibm.com/software/webservers/appserv/doc/v51/prereqs/was_v511.htm

Database support
For the WebSphere installation, the database does not have to be configured.
Cloudscape can be used in the test environment, but other databases are
required for the production environment.

320 WebSphere and .Net Interoperability Using Web Services

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/v51/prereqs/was_v511.htm

Installing WebSphere Application Server 5.1.1.1
In order to install WebSphere Application Server V5.1.1.1, first we install V5.1.1
and then install cumulative fix 5.1.1.1.

Installation process for the V5.1 base product
We start the LaunchPad (launchpad.bat) to access the product overview, the
ReadMe file and installation guides.

Select Install the product to launch the installation wizard.1

After confirming that you agree with the license agreement, choose between two
installation choices: Full and Custom. Full installs the entire product, whereas the
Custom installation option allows you to deselect components you do not want to
install. We chose the Full installation.

The installation directories for the selected components are entered in the next
window. We chose:

c:\WebSphere\AppServer
c:\WebSphere\IBMHttpServer
c:\WebSphere\WebSphere MQ

In the following panel, enter a node name and host name or IP address. In
addition, you can choose to install both WebSphere Application Server and IBM
HTTP Server as a service on Windows NT, 2000, 2003 and XP.

After the Summary window, the installation starts.

The FirstSteps window is started automatically at the end of the installation.

Verifying the installation
Installation verification can be started from the menu. In Windows 2000, click
Start → IBM → WebSphere Application Server v5.1 → First Steps. Then
select Verify Installation. You can also start with the command ivc localhost.

If the install was successful, you should see messages similar to the following:

IVTL0095I: defaulting to host <node> and port 9080
IVTL0010I: Connecting to the WebSphere Application Server <node> on port: 9080

Note: This publication includes sample code that uses a database and a data
source server configuration that is for DB2 UDB V8.1.

1 If installing on Windows Server 2003, we found we needed to change the properties of the
installation .exe files (setup and install) to be Windows 2000 compatible.

 Appendix A. Installation and setup 321

IVTL0020I: Could not connect to Application Server, waiting for server to start
IVTL0025I: Attempting to start the Application Server
IVTL0030I: Running cmd.exe /c "C:\WebSphere\AppServer\bin\startServer" server1
>ADMU0116I: Tool information is being logged in file
> C:\WebSphere\AppServer\logs\server1\startServer.log
>ADMU3100I: Reading configuration for server: server1
>ADMU3200I: Server launched. Waiting for initialization status.
>ADMU3000I: Server server1 open for e-business; process id is 3056
IVTL0050I: Servlet Engine Verification Status - Passed
IVTL0055I: JSP Verification Status - Passed
IVTL0060I: EJB Verification Status - Passed
IVTL0070I: IVT Verification Succeeded
IVTL0080I: Installation Verification is complete

Fixpack
After successful installation of version 5.1, we install fixpack 5.1.1 and then
cumulative fix 5.1.1.1. This will upgrade WebSphere Application Server to
version 5.1.1.1. It is available from:
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg24007753

To install fixpack 5.1.1, we will follow the steps below:

1. Launch Update Wizard (updateWizard.bat).

2. Select a language.

3. First, a welcome window will appear and then the next window will display
currently installed products as shown in Figure A-1 on page 323; click Next.

322 WebSphere and .Net Interoperability Using Web Services

Figure A-1 updateWizard - currently installed product

4. Select Install Fixpack.

5. Select the directory where fix packs are located.

6. After scanning for installable fix packs, the next window will display the fix
pack to install; click Next.

7. A successful message will confirm installation completion.

Installation of Application Developer 5.1.2
To install WebSphere Studio Application Developer 5.1.2, perform the following
steps:

1. Double-click setup.exe and the Installation Launcher window appears.

2. Select Install IBM WebSphere Studio Application Developer.

3. In the Welcome window, click Next.

4. In the License Agreement window, accept the agreement, then click Next.

 Appendix A. Installation and setup 323

5. In the Destination Folder window, select a folder of your choice and click
Next. We used the default folder as the installation folder:

c:\Program Files\IBM\WebSphere Studio\Application Developer\v5.1.2

6. In the Custom Setup window, accept the defaults, then click Next.

7. In the next window, click Install.

8. After a rather long time period, the next window tells you of the success of the
installation. Click Finish.

9. The last window allows you to specify the location of your workspace. We
use:

c:\Examples\Merger-n-Acquisition

for the workspace location for the first Mergers and Acquisitions scenario.

Fixpack
Install Interim Fix 004 using Install/Update Perspective, as follows:

1. Download the ZIP file (wsappdev512_interim_fix004.zip) from the following
site:

ftp://www3.software.ibm.com/software/websphere/studiotools/zips/512/wsappde
v512_interim_fix004.zip

2. Unzip it in the local file system.

3. Open the Install/Update Perspective in WebSphere Studio Application
Developer.

4. Expand the Feature Updates pane as shown in Figure A-2, then click Install
Now.

Figure A-2 Feature updates - Interim fixpack 004

5. Follow Install wizard to complete the installation.

Installing optional components
The optional components are not required to follow the samples in this
publication.

324 WebSphere and .Net Interoperability Using Web Services

ftp://www3.software.ibm.com/software/websphere/studiotools/zips/512/wsappdev512_interim_fix004.zip

You can install these components:

� IBM Agent Controller: if you want to test or debug applications running in a
real WebSphere Application Server on the same or another machine.

� Embedded messaging client and server: if you want to develop applications
using WebSphere MQ (the message driven bean we use for Web services
can be tested using the built-in MQ Simulator).

� Rational ClearCase® LT: for team development as an alternative to Common
Versions Systems (CVS).

Starting Application Developer with a dedicated workspace
You can create icons to start Application Developer with multiple workspaces. In
the Properties window of the icon, enter the target with the -data flag to indicate
the workspace location, for example:

C:\<WSAD-HOME>\wsappdev.exe -data C:\Examples\Merger-n-Acquisition

Installation planning for the Microsoft .Net environment
� Windows 2003 Server

Install Windows 2003 Server on the computer.

� Microsoft Visual Studio .Net 2003

Install the prerequisite disk and visual studio disk and perform the update.

� Microsoft .Net Framework 1.1

This comes with Microsoft Visual Studio .Net 2003 or you can download it
from the Microsoft Web site.

� IIS 6.0

After installing Windows 2003 Server, we need to separately install the IIS
6.0. Go to Settings → Control Panel → Add/Remove Programs and select
Add/Remove Window Components. Select Application Server and click
Next. Click Finish to complete the process.

 Appendix A. Installation and setup 325

326 WebSphere and .Net Interoperability Using Web Services

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246395

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds to the
redbook form number, SG24-6395.

B

© Copyright IBM Corp. 2005. All rights reserved. 327

ftp://www.redbooks.ibm.com/redbooks/SG246395
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246395.zip Zipped Code Samples
sa-h412 readme.htm This document describes the contents of the zip file

System requirements for downloading and running the Web material
The following system configuration is recommended:

� Minimum 1GHz Intel Pentium or equivalent
� Minimum 1 GB RAM
� 40 GB Disk
� WebSphere Studio Application Developer 5.1
� WebSphere Application Server 5.1.1.1 (optional)
� Windows 2000 with upgrades or better, capable of running:

– Microsoft Visual Studio .Net 2003
– Microsoft .Net Framework 1.1
– IIS 6.0

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Instructions for installing the system software are in Appendix A, “Installation and
setup” on page 319, and instructions for using the material in Chapter 12,
“Building the claims scenario” on page 251.

In addition to the source materials and .ear files needed for the samples, for
those familiar with using .Net there are also binaries for .Net which can be
deployed directly rather than building with Microsoft Visual Studio .Net 2003.

Note: The Microsoft .Net Web service Extensions are not required for this
version of the redbook. They will be required for the security samples.

328 WebSphere and .Net Interoperability Using Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 333. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere Version 5.1 Application Developer 5.1.1 Web Services
Handbook, SG24-6891

� Patterns: Service Oriented Architecture and Web Services, SG24-6303

� Using Web Services for Business Integration, SG24-6583

� WebSphere Web Services Information Roadmap, REDP-3854-00

� WebSphere Version 5 Application Development Handbook, SG24-6993-00

� WebSphere and Microsoft .Net Coexistence, SG24-7027

� Patterns: Implementing an SOA Using an Enterprise Service Bus,
SG24-6346

Online resources
These Web sites and URLs are also relevant as further information sources:

developerWorks and other IBM articles
� Merging disparate IT systems: Build a single integrated view for users quickly

and with minimal disruption, IBM developerWorks, found at:

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html

� Specifications and Standards, IBM developerWorks, found at:

http://www-106.ibm.com/developerworks/views/webservices/standards.jsp

� Discover SOAP encoding's impact on Web service performance, by Frank
Cohen, found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/

© Copyright IBM Corp. 2005. All rights reserved. 329

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html
http://www-106.ibm.com/developerworks/views/webservices/standards.jsp
http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/

� IBM Patterns for e-business, found at:

http://www-106.ibm.com/developerworks/patterns/

� The hidden impact of WS-Addressing on SOAP, by Doug Davis, IBM
developerWorks, found at:

http://www-106.ibm.com/developerworks/webservices/library/ws-address.html

� Security in a Web Services World: A Proposed Architecture and Roadmap,
IBM and Microsoft 2002, found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-secmap/

� An overview of the Web Services Inspection Language, by Peter Brittenham,
found at:

http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover1/

� Enterprise Privacy Authorization Language, IBM Zurich Labs, found at:

http://www.zurich.ibm.com/security/enterprise-privacy/epal/

� Declarative Privacy Monitoring for Tivoli Privacy Manager, IBM alphaWorks,
found at:

http://www.alphaworks.ibm.com/tech/dpm

� Web Services Atomic Transaction for WebSphere Application Server, IBM
alphaWorks, October 2003, found at:

http://www.alphaworks.ibm.com/tech/wsat

� WebSphere MQSeries SOAP Supportpac, found at:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma
0r.html

� Invoking Web services with Java clients by Bertrand Portier, found at:

http://www-106.ibm.com/developerworks/webservices/library/ws-javaclient

MSDN articles
� Web services specifications, Microsoft MSDN, found at:

http://msdn.microsoft.com/webservices/understanding/specs/default.aspx

� Application Interoperability: Microsoft .Net and J2EE, found at:

http://download.microsoft.com/download/7/2/6/7269f183-639a-4e99-bd84-cc3e65
15af86/PnP_J2EE_Interop_V1.pdf

� Understanding Web services, Microsoft MSDN, found at:

http://msdn.microsoft.com/webservices/understanding/default.aspx

� How ASP.NET Web Services Work, Aaron Skinnard, found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/h
tml/howwebmeth.asp

330 WebSphere and .Net Interoperability Using Web Services

http://download.microsoft.com/download/7/2/6/7269f183-639a-4e99-bd84-cc3e6515af86/PnP_J2EE_Interop_V1.pdf
http://msdn.microsoft.com/webservices/understanding/default.aspx
http://www-106.ibm.com/developerworks/patterns/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/howwebmeth.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/howwebmeth.asp
http://www-106.ibm.com/developerworks/webservices/library/ws-address.html
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx
http://www-106.ibm.com/developerworks/webservices/library/ws-address.html
http://www-128.ibm.com/developerworks/webservices/library/ws-secmap/
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover1/
http://www.alphaworks.ibm.com/tech/wsat
http://www.zurich.ibm.com/security/enterprise-privacy/epal/
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.html
http://www-106.ibm.com/developerworks/webservices/library/ws-javaclient
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover1/
http://www.alphaworks.ibm.com/tech/dpm

� Sending Files, Attachments, and SOAP Messages Via Direct Internet
Message Encapsulation, MSDN Magazine, December 2002, found at:

http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx

� Web Services Interoperability Guidance (WSIG): IBM WebSphere Application
Developer 5.1.2, MSDN, found at:

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbd
a/html/wsinteroprecsibm-final.asp

� Building Interoperable Web services, WS-I Basic Profile 1.0, V1.0, Microsoft
2003, found at:

http://www.microsoft.com/downloads/details.aspx?FamilyId=60080CA9-2466-43E4
-A19C-8A9DE724ABA8&displaylang=en

� WS-Security Drilldown in Web services Enhancements 2.0 by Don Smith,
found at:

http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/libra
ry/en-us/dnwse/html/wssecdrill.asp

� What Is Managed Code?, MSDN, found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m
/directx/whatismanagedcode.asp

� Improving Web Application Security, Threats and Countermeasures,
Microsoft, found at:

http://www.microsoft.com/downloads/details.aspx?FamilyId=E9C4BFAA-AF88-4AA5
-88D4-0DEA898C31B9&displaylang=en

� Application Architecture for .NET: Designing Applications and Services,
Microsoft, found at:

http://www.microsoft.com/downloads/details.aspx?FamilyId=A08E4A09-7AE3-4942
-B466-CC778A3BAB34&displaylang=en

� Securing ASP.NET Web Services, Microsoft, found at:

http://www.microsoft.com/technet/itsolutions/net/maintain/secnetws.mspx

� The argument against SOAP encoding, Tim Ewald, MSDN Oct 2002, found
at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/htm
l/argsoape.asp

Standards bodies
� For a list of all WS-* specifications, refer to Table 7-2 on page 116.

 Related publications 331

http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=60080CA9-2466-43E4-A19C-8A9DE724ABA8&displaylang=en
http://msdn.microsoft.com/webservices/building/wse/default.aspx?pull=/library/en-us/dnwse/html/wssecdrill.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m/directx/whatismanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m/directx/whatismanagedcode.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=E9C4BFAA-AF88-4AA5-88D4-0DEA898C31B9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A08E4A09-7AE3-4942-B466-CC778A3BAB34&displaylang=en
http://www.microsoft.com/technet/itsolutions/net/maintain/secnetws.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html/argsoape.asp
http://www.microsoft.com/technet/itsolutions/net/maintain/secnetws.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m/directx/whatismanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_m/directx/whatismanagedcode.asp

WS-I
� WS-I Basic Profile base specifications are in Table 8-1 on page 147.

� WS-I Basic Profile Version 1.0, found at:

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

� WS-I Basic Profile 1.1, found at:

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references

W3C
� Simple Object Access Protocol (SOAP) 1.1, W3C note 8 May 2000, found at:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

� WSDL 1.1 is available from W3C at:

-http://www.w3.org/TR/2001/NOTE-wsdl-20010315

� Web services Architecture, W3C 2004, found at:

http://www.w3c.org/TR/ws-arch/

OAGIS
� eXtensible Access Control Markup Language (XACML), OAGIS, found at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

� Business Transaction Protocol 1.0 , OAGIS 2002, found at:

http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee
_spec_1.0.pdf

OASIS
� OASIS - Web Services pages, found at:

http://www.oasis-open.org/committees/tc_cat.php?cat=ws

� ASOAP Message Security V1.0 (WS-Security 2004), OASIS, found at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-securi
ty-1.0.pdf

� Username Token Profile V1.0, OASIS, found at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-prof
ile-1.0.pdf

� X.509 Token Profile V1.0, OASIS, found at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0.pdf

332 WebSphere and .Net Interoperability Using Web Services

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3c.org/TR/ws-arch/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_cat.php?cat=ws
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Others
� Predicts 2003: SOA is Changing Software, Roy Schulte (Gartner, Inc.), found

at:

http://www.gartner.com/resources/111900/111987/111987.pdf

� Identifying best-of-breed characteristics in Enterprise Services Buses (ESBs),
Steve Craggs, June 2003, found at:

http://www.sonicsoftware.com/products/whitepapers/docs/best_of_breed_esbs.p
df

� Hype Cycle for Web Services, 2003 and Hype Cycle for Web Services, 2004,
W.Andrews, D. Smith, C. Abrams, R. Wagner, R. Valdes, C. Haight, M.
Govekar, Gartner Strategic Analysis Report

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
� IBM Support and downloads

ibm.com/support

� IBM Global Services

ibm.com/services

 Related publications 333

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.gartner.com/resources/111900/111987/111987.pdf
http://www.sonicsoftware.com/products/whitepapers/docs/best_of_breed_esbs.pdf

334 WebSphere and .Net Interoperability Using Web Services

acronyms

FORTRN

.Net “dot Net” Web service
platform on Windows
(Microsoft)

ADO Active Data Object: COM
object used to access
database (Microsoft)

AES Advanced Encryption
Standard

AKAMAI Company that hosts a about
15% of all Internet traffic

B2B Business to Business

B2C Business to Consumer

BEA Software company. Named
after Bill Coleman, Ed Scott,
and Alfred Chuang

BMP Bean Managed Persistence

BPEL Business Process Execution
Language

BPEL4WS Business Process Execution
Language for Web service

BPM Business Process
Management

CLR Common Language Runtime
(Microsoft)

CMP Container Managed
Persistence

COM+ Current version of the
Component Object Model
(Microsoft)

CORBA Common Object Request
Broker Architecture

DB/2 Database (IBM)

DCOM Distributed Common Object
Model

DII Dynamic Invocation Interface

DIME Direct Internet Messaging
Encapsulation (Microsoft)

Abbreviations and

© Copyright IBM Corp. 2005. All rights reserved.
DMZ Demilitarized Zone

DSA Digital Signature Algorithm

EAI Enterprise Application
Integrations

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise JavaBean

EPAL Enterprise Privacy
Automation Language

EPAL Enterprise Privacy
Authorization Language

EPR Endpoint Reference

ESB Enterprise Service Bus

ETTK Emerging Technologies
Toolkit (IBM)

FORTRAN Formula Translation
(Programming language)

GRID Technologies for sharing
remote computer resources

Http Hypertext transfer protocol

Https Secure Http

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IDL Interface Definition Language

IETF Internet Engineering
Taskforce

IIOP Internet Inter Operable
Protocol or Internet Inter-ORB
protocol (CORBA)

IIS Internet Information Server
((Microsoft)

 335

IMS Information Management
System (IBM)

INETMGR Program that runs IIS
((Microsoft)

IONA Irish Software company
originally associated with
CORBA

IP Internet Protocol

ISO International standards
Organization

IT Information Technology

ITSO International Technical
Support Organization

J# J-Sharp (Java on Windows)

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAAS Java Authentication and
Authorization Service

JAXP Java for XML Parsing

JAX-RPC Java for XML Remote
Procedure Call

JCA Java Connector Architecture

JCP Java Community Process

JDBC Java Database Connectivity

JNDI Java Naming and Directory
Interface

JScript Java Script

JSP Java Servlet Page

JSR Java Specification Request

JTA Java Transaction Architecture

JVM Java Virtual Machine

MDB Message Driven Bean

MIME Multipurpose Internet Mail
Extensions

MMC Microsoft Management
Console

MSDE Microsoft SQL Server
Desktop Engine

MSDN Microsoft Developer Network

MSFT Microsoft (Share listing name)

MSIL Microsoft Intermediate
Language

MTOM Message Transmission
Optimization Mechanism

MUWS Management using Web
Services

NIST National Institute for
Standards and Technology
(US)

NONCE Number that can only be used
ONCE

OAGIS Open Applications Group
Interface Specification

OASIS Organization for the
Advancement of Structured
Information Standards

ODBC Open Database Connectivity

P4eb Patterns for e-Business (IBM)

PKCS7 Type of X.509 security
certification

RFC Request for Comment

RMI/IIOP Remote Method Invocation
over Inter Operable Object
Protocol

RPC Remote Procedure Call

RPSS Reverse Proxy Security
Server

RSA Software security company
founded by Ron Rivest, Adi
Shamir
and Len Adleman to
commercialize their discovery
of an asymmetric encryption
algorithm

RUP Rational Unified Process

S/390 System 390 (IBM)

SAP Systeme, Anwendungen,
Produkte in der
Datenverarbeitung -Software
company

336 WebSphere and .Net Interoperability Using Web Services

SEI System Endpoint Interface

SHA-1 Secure Hashing Algorithm - 1

SOA Service-Oriented Architecture

SOAP Simple Object Access
Protocol (now simply SOAP)

SOAPACTION SOAP parameter naming
service to be called
(Microsoft)

SPML Service Provisioning Markup
Language

SQL Structured Query Language

SSL Secure Sockets Layer

SwA SOAP with Attachments

TCP/IP Transport Control
Protocol/Internet Protocol

TIBCO The Information Bus
Company

TLS Transport Layer Security

UDDI Universal Data Definition
Interface

UERL Universal Resource Locator

UML Unified Modelling Language

URI Universal Resource Identifier

UTP-16 A universal 2 byte character
encoding scheme

UTP-8 A universal mixed one and
two byte character encoding
scheme

W3C World Wide Web Consortium

WS- Web service

WS-CAF Web service Composite
Application Framework

WS-CTX Context

WSDL Web services definition
language

wsdl2java Web services to Java
(converts WSDL to Java
object)

WS-I Web Services Interoperability
Organization

WSIL Web service Inspection
Language

WS-RM Web services reliable
messaging

WSRP Web service for remote
portals

WS-TXM Web services transaction
Management

WSXL Web services experience
language

WX-CF Web service coordination
framework

X.509 Standard for Public-Key
Infrastructure

XACML Extensible Access Control
Markup Language

XDE Extended Development
Environment (IBM)

XMI XML metadata interchange

XML Extensible Markup Language

XOP XML Binary Optimized
Package

XSD XML Schema Definition

 Abbreviations and acronyms 337

338 WebSphere and .Net Interoperability Using Web Services

Index

Symbols
.asmx 22–23, 224
.ear 207
.Net Remoting 193
.war 207

A
Access integration pattern 99
Active Data Objects 192
Active Directory 223
Active Server Pages 192
adapter server 49
adapters xiii, 13, 101–102, 109, 111, 196

bridges 46
administrators 5–6
ADO 192, 194, 196

ADO.NET 194
AES

Advanced Encryption Standard 175
affinity 64, 126, 187–188
Apache

Axis 149
Struts 207
Web Server 192

Application Architecture for .NET
Designing Applications and Services 331

Application Interoperability
Microsoft .Net and J2E 330

application tier 96
architects 5
Articles

An overview of the Web Services Inspection
Language 136, 330
Application Architecture for .NET

Designing Applications and Services 226
Application Architecture for .NET - Designing
Applications and Services 226
Building Interoperable Web services, WS-I Basic
Profile 1.0, V1.0 331
Declarative Privacy Monitoring for Tivoli Privacy
Manager 130, 330
Discover SOAP encoding's impact on Web ser-
vice performance 20

© Copyright IBM Corp. 2005. All rights reserved.
Discover SOAP encoding’s impact on Web ser-
vice performance 329
Enterprise Privacy Authorization Language 330
How ASP.NET Web Services Work 22
Hype Cycle for Web Services, 2003 & Hype Cy-
cle for Web Services, 2004 333
Identifying best-of-breed characteristics in En-
terprise Services Buses (ESBs) 333
Improving Web Application Security, Threats
and Countermeasures 224
Invoking Web services with Java clients 330
Merging disparate IT systems

Build a single integrated view for users quick-
ly and with minimal disruption 3, 329

Patterns
Implementing an SOA Using an Enterprise
Service Bus, SG24-6346 329

Predicts 2003 - SOA is Changing Software 57,
333
Securing ASP.NET Web Services 226
Security in a Web Services World

A Proposed Architecture and Roadmap 330
Security in a Web Services World - A Proposed
Architecture and Roadmap 129
Sending Files, Attachments, and SOAP Messag-
es Via Direct Internet Message Encapsulation
128, 331
The argument against SOAP encoding 36, 331
The hidden impact of WS-Addressing on SOAP
126, 330
Using Web Services for Business Integration,
SG24-6583 329
Web Services Atomic Transaction for Web-
Sphere Application Server 330
Web Services-Specifications and Standards
329
WebSphere and Microsoft .Net Coexistence,
SG24-7027 329
WebSphere Version 5 Application Development
Handbook, SG24-6993-00 231, 329
WebSphere Version 5.1 Application Developer
5.1.1 Web Services Handbook, SG24-6891 329
WebSphere Web Services Information Road-
map, REDP-3854-00 329

 339

What Is Managed Code? 331
asynchronous

messaging 20
model 126
response 126, 157–158

Atomic Transaction 179
Attachments

base64Binary 123, 127–128, 246
binary attachment data 127
DIME 127–128, 171
Direct Internet Messaging Encapsulation 127
MIME 127
MTOM 128
SwA 127

Authors
C. Abrams 115
C. Haight 115
D. Smith 115
Jeannine Hall Gailey 128
M. Govekar 115
Peter Brittenham 136
R. Valdes 115
R. Wagner 115
Tarak Modi 137
W.Andrews 115

B
B2B 98, 139, 216–217
B2C 216
Batch systems 207
BEA 116–117, 119–120, 122, 133, 177, 182
Best practices 146

guidelines 94
BPEL 64, 76, 116

BPEL4WS 53, 116, 138, 204
BPM 79, 85, 88, 240, 242
broadcast 109, 124
broker 40–41, 47, 75, 109–110, 130
browser 12
building blocks 54, 95, 177
bus topologies 56
Business Layer 195, 207, 225
business needs 137
business objects 195
Business Process 40, 53, 64, 72, 104, 138
business processes xi, 2–3, 53, 72–75, 78, 98–99,
134, 177
business requirements 5, 37, 51, 95, 107–108

Business Transaction Protocol 1.0 132, 332

C
C# 193
call center 106
Callback 125
central point of control 56
CICS 2, 41, 47, 61, 70–71, 103, 134, 207
claims database 75
class library 196
ClassCastException 314
client application 199, 206
Cloudscape 220, 320
CLR 124, 193, 195, 245

IL
Intermediate Language 195

intermediate language 193, 195
Managed C++ 193

clusters of servers 64
coarse-grained 42

services 20
code behind 197, 290
COM+ 192
Common Language Runtime 124, 193, 195, 245
communication protocols 55
complex business process interactions 40
Computer Associates 117–118, 120
connectors 46–47, 50, 83, 96, 207
consultant xiv, 5
container 46
Coordination

CoordinationContext 178
coordination 45, 117, 133–134, 139, 177, 179–180,
222
CORBA 19
Corporations

AKAMAI Technologies 117–118
ArjunaTechnologies 117
DevelopMentor 12
Fujitsu 117–118, 133, 137
Globus 117–119, 137
Hewlett-Packard 117–118
IONA 117, 133
JDEdwards 207
Layer 7 Technologies 119–120
Microsoft 12, 22
Oblix 119–120
Oracle 117, 133

340 WebSphere and .Net Interoperability Using Web Services

PeopleSoft 50
SalCentral 137
SAP 47, 50, 61, 117–118, 202, 207
Sonic Software 117–118
Sun 117–118, 133
Talking Blocks 118, 140
TIBCO 117–118, 182
Tivoli 130
VeriSign 117, 119–120, 161
webMethods 118

Coupling 19, 46, 60, 90–91, 99, 186, 221

D
data integrity 88
Data Layer 196, 207
data types 28, 43, 123, 153, 208, 229, 246–247,
250

array with null values 314–315
complex type 20
dateTime 35, 123, 239, 245–246, 277–278,
280, 285, 291, 307, 313, 315
empty array 314–315
hexBinary 123, 127, 247
null array 315

databases 97, 192, 196, 207, 236, 320
DB/2 220
DCOM 12, 19
Deployment

descriptor 262, 268–269
manager 220
models 215
Web services 273

design model 236, 245
developers, Roles, See also Roles 141
developerWorks xiv, 2, 116–120, 126, 129, 136,
182, 186
Digital Signature Algorithm

DSA 164
DII

Dynamic Invocation Interface 210
DIME

Direct Internet Messaging Encapsulation
127–128, 171

Direct Internet Messaging Encapsulation 127
distributed application 12, 42, 207
distributed components 24
Distributed Internet Applications 192
disvestment 72

DNA 192–193
domain name 312
dot.com 70–71, 103, 135, 252
DSA

Digital Signature Algorithm 164
duplicate IT capabilities 71
Duplicate names 312
duplicate proxy classes 312
dynamic clients 60
dynamic invocation 89, 210
Dynamic Invocation Interface 210
Dynamic proxy 210

E
EAI xiii, 78, 88
Ease of use 46
e-business xii–xiv, 50, 66–67, 71, 93–96, 100, 102,
112, 198, 322

applications 94
solutions 94

EDI 19, 75–76
Eiffel 193
EIS 47–49, 62, 202, 236
EJB

bean managed 202
BMP 202, 242
CMP 202
container 201–202, 205, 209–210, 212
entity beans 202, 207
session bean 253, 255–256
stateless session beans 202

e-mail 19, 74, 85
Emerging Technologies Toolkit 134, 155
Enterprise application integration 50, 78
Enterprise Application Resource 207
Enterprise Information System 47, 202, 207, 236
Enterprise Service Bus xi, 39, 41, 56, 58–66, 88,
90, 96, 109, 125
EPAL 1.1 130
ESB xi
ETTK

Emerging Technologies Toolkit 134, 155
Event-driven Architecture 90
exception management 192, 306
eXtensible Access Control Markup Language (XAC-
ML) 332
External Claims Assessors Scenario 229, 240

assessment report 84, 88–89, 240, 242, 245

 Index 341

assessor automation system 84
Assessor BPM 242
Assessor Business Process Management 242,
244
Assessor Management Business Rules 242,
244
Assessor Management System 87, 92, 242,
244
claims assessors 4, 70, 74, 80, 83, 86, 88, 90,
103, 189, 229, 240
claims handler 75–76, 78, 87–88, 107, 240–242
claims process 6, 70, 73–74, 83–84, 86, 107
claims supervisor 75–76
cost reduction 71, 76
Document Management System 88, 242, 245
External Assessor System 241–242, 245
External Claims Assessor 4, 70, 83–85, 88, 98,
103, 251
external independent assessor 241
external service provider 86
Identify assessors 87
Investigate claim 76, 78
Receive Assessment report 88
Select assessor 87

extranets 40

F
financial services sector 71
FORTRAN 193

G
garbage collection 192–193, 195
Gartner 45, 115
gateway service 219
Globalization 50
GRID 137

H
high availability 20
high-level design 69
horizontal integration 98
hot failover 64
How ASP.NET Web Services Work 330
http

POST 21–23
Https 121, 156, 159, 171, 219, 221, 223
hub-and-spoke 56, 75

Hursley xiii, 2

I
IBM Agent Controller 325
IBM alphaWorks 134, 155, 180
IBM Patterns for e-business 93, 330
IBM System House Business Scenarios 2, 70
IBM UDDI registry 220
IDE 48
IDL 36
IETF 116
IIOP 12, 45, 55, 100, 182, 195, 202
IIS 6.0 111, 223, 325, 328
Improving Web Application Security, Threats and
Countermeasures 331
IMS 207
INETMGR 284
In-order-delivery 183
Integrated Development Environments 48
integrated software platform 70
integration gaps 70
Integration Layer 77–78, 80, 207, 218, 236–238
Intentia 50
Internet Information Services 192, 283–284, 292
Internet scenario 229
Internet Service (IIS) Manager 284
intranet 24, 40, 74, 80, 90, 98, 110, 216, 218, 224,
229
IP address 224, 321
ISO 24

layer 7 24
IT

infrastructures 12, 69–70, 72, 74
policies 71, 111
solutions 70–71
systems 3, 73

J
Java

Authentication and Authorization Service 201
Beans 79, 202, 252
Connector Architecture 47, 202
Database Connectivity 202
for XML Parsing 201
J# 193
J2EE xiii–xiv, 3, 51, 63, 76, 134, 181, 191, 204,
206, 208, 219–220, 222, 236, 268
J2EE and .Net

342 WebSphere and .Net Interoperability Using Web Services

comparison 191
J2SE 123, 208–209, 212, 252
JAAS 201
Java 2 Enterprise Edition xii, 3–4, 46–48, 191,
195, 200–203, 206–207, 209–210, 212–213,
252, 293

application client container 201
programming model 201, 204–205

java.lang.ClassCastException 314
java2wsdl 149
Java-RMI 12
JAXP 202
JAX-RPC 204–205, 210, 218–219, 222
JCA 47–48, 202
JCP 116
JDBC 196, 202
JNDI 202, 273
JScript 193–194
JSP 192, 202, 207, 266–267, 269, 297, 322
JSR 101 116, 122, 124, 204–206, 210, 269
JSR 109 205, 210, 268
JSR109 116
JTA 63, 180–182
JVM 193, 195
Naming and Directory Interface 202
Remote Method Invocation 202
Server Page 192
servlets 202
Transaction API 63

JMS 189
Judge claim 76, 78

L
legacy system 40
level of isolation 60
load balancing 64, 125, 186–188, 226
location transparency 51, 55
locator class 296
logging 63, 65, 218
loosely coupled 19, 45, 51, 55, 80, 95, 192

M
managed environment 47, 55
Management using Web Services 140
Management using Web services 140
MDB 202
Mergers and Acquisitions Scenario xi, 2–3, 70–73,
76, 78, 80–81, 91, 102, 104, 111–112, 227,

229–231, 251, 276, 324–325
administration costs 72, 83
auto-insurance 71
back-end system 73, 75, 80, 233, 235
business case 251
business events 70
Business goals 69–71, 83, 92
Business Layer 236, 245, 282
business needs 70
business problems 70
Business Process 78–79, 83, 85–86, 91, 242,
244
business requirements 69–70, 88
business vision 77
call center 75
claim agent 75
Claim Applications

Table Schema 245
claim number 75–76
claim references 78
claim registration 76, 230, 232–233, 235
ClaimDataAccess 278–280
ClaimDataAccessObject 238
ClaimException 239–240, 278, 282, 303–305
ClaimProcess application 230, 236
claims administration 72–73
claims applications -- Table Schema 229
claims assessors 3
claims database 76
claims information 75
claims registration scenario 104–106, 110
claims scenario 227
claims system 73–75, 77, 81, 84, 88
ClaimWebService 238–239
client application 75, 241, 302
CustomerDataAccessObject 238
Data Layer 245, 282
DataAccessException 238
DCClaimSystem 235, 237
Deployment descriptor 262, 268–269
disparate IT system 76
Enterprise application ItsoClaim 258
findCustomer 23, 32, 238–239, 248–249,
260–261, 265, 270, 275, 277–278, 291, 297,
302, 304–305
LGIClaimSystem 235, 237
Lord General Insurance 71, 102, 155, 252
policy selector application 105, 107, 109–110
Register claim xii, 75, 77, 80, 230–235,

 Index 343

237–238, 245, 251–252, 276
registerClaim 31–33, 35, 238–239, 247–248,
260, 265–266, 270, 277–278, 291, 304–308

Message confidentiality 159
Message Driven Beans 202
message signatures 20
Message Transmission Optimization Mechanism
128
Message-Driven beans 202, 207
Messages 28, 36
Messaging

At-least-once delivery 183
At-most-once delivery 183
Exactly-once delivery 183
message hub 75
Message Information Headers 126
Message integrity 159
message level encryption 159–160
Message-driven architecture 90
One-way 21–22, 24, 124, 202
reliable messaging 132–134, 182–183,
186–187
request-response 21, 97, 124, 137, 155

meta-data 35, 37
Microsoft

.Net Framework 222

.Net Web service deployment model 222
ASP.NET 222
Intermediate Language 193
Management Console 223
MMC 223
MSDE 223
MSDN 36, 120, 122, 128, 195, 306
MSFT 116–117, 119–120
MSIL 193
patterns and practices 226
Server 2003 xii, 3
SQL Server 196, 223
SQL Server 2000 Desktop Engine 223
UDDI registry 222
Visual Studio .Net 2003 xi, 27, 111, 149, 194,
196–199, 213, 227, 237, 245, 276, 283, 285,
290, 292, 303, 306–307, 309, 312, 315, 325, 328
Web Service Enhancements 200–201, 212

middleware 58, 90, 94, 96, 100, 207
MIME 127
MMC 223
Model-View-Controller pattern 202, 207
monitor and manage 72, 83

MSDN Magazine 331
MSIL 195
Multi-hop 125
Multipart message 127
MUWS 140

N
namespace 15–16, 22, 28, 30, 32, 123, 151,
153–154, 192, 199, 212, 278, 280–282, 290,
312–313
naming conventions 136, 312
National Institute for Standards and Technology
163
network protocol 14, 42
network transports 14
new technology 74, 99
nibblized 128
NIST 163
NONCE 175
non-interruptible processes 79
non-repudiation 88

O
OASIS 116, 118–119, 131–133, 139–140, 143,
161, 177, 183, 211–212, 216
ODBC 196
off-the-shelf 75
on demand xiv, 43, 80
open standards 76, 85
OpenNetwork Technologies 119–120
open-source 44
Oracle xiv
Organization for the Advancement of Structured In-
formation Standards 161
out-of-band 147
outsourcing 2, 70

P
P4eb

Patterns for e-business xii, 66, 93–96, 100, 102,
112, 198

package name 312
Pascal 193
Patterns

Application 96, 99, 107
Application Integration 100, 107, 109
Application integration 104–105

344 WebSphere and .Net Interoperability Using Web Services

Application interoperability 14
Broker 109
Business 94, 99, 103
Collaboration 99
Composite 94
Direct Connection 98, 100–102, 107, 109–110
Direct connection single adapter 100–101
Extended Enterprise 98–99, 109
Governance 47, 56, 63
half adapter 101
hub-and-spoke 107
Integration 94, 99, 103
P4eb

Patterns for e-business 198
Product mappings 94, 96, 104, 111
Runtime patterns 94–96, 99, 103, 108,
110–111
Self-Service 96–99, 104
Service-Oriented Architecture and Web Servic-
es, SG24-6303-00 329

patterns
Information Aggregation 99

patterns selection 251
Perl 193
physical format 36
Ping Identity Corp 119–120
PKCS7 176
point-to-point architecture 56
policy administration 72–74
Portal 139
portTypes 36
presentation layer 24, 81, 194–195, 206–207, 222,
236
presentation tier 96
Problem determination 60, 65, 77
Process Choreographer 79
processing nodes 62
producer 89, 114, 127, 140
production applications 14
profitability 71–72, 83
programmers 5–6
programming language 13, 24, 36, 43–44, 180
property and casualty insurance company 70–71
Protocol independent 51, 80
publish/subscribe 109, 124
Python 193

Q
quality of service 24, 41, 46, 51–53, 55, 61, 88, 91,
96, 102, 108, 111, 134, 188, 192, 194

R
Rational Unified Process 5
Rational XDE 230–231, 237, 242
Reactivity 119–120
Redbooks Web site 333
redeployment 60
redundant network paths 64
reliable messaging xii
Remote Method Invocation 195, 202
Remote portlets 139
reprogramming 60
Request assessment 88
Request Availability 87
Resource/Data Layer 207
reusable business function 55
reverse proxy 63, 108, 217–218
RFC2246

The TLS Protocol Version 1.0 148
RFC2459

Internet X 509 Public Key infrastructure Certifi-
cate and CRL Profile 148

RFC2616
Hypertext Transfer Protocol - HTTP/1.1 147

RFC2818
HTTP Over TLS 148

RFC2965 148
RMI/IIOP 195, 202
Robustness 46, 60, 63
Roles 5, 15, 70, 273

Actors 167–168, 230–232, 240–241, 250
administrators 224
analysts 70
application designer 16
architect 92
architects 44, 94, 125, 127, 183
component designer 197, 278
consultant 70, 92
developers 36, 44, 70, 117, 141, 230
programmers 19, 24, 224, 226, 314
staff roles 74

routing 14, 29, 58, 75, 107, 125, 156, 160–161, 187
RPSS

Reverse proxy security server 63
Runtime pattern xii

 Index 345

RUP 5

S
S/390 71, 103
sample applications 146
Scalability 60, 64, 203, 223
scenarios xiii, 2–3, 65–66, 69–70, 92, 102, 114,
146, 216, 229, 231, 250–251
Securing ASP.NET Web Services 331
Security

asymmetric encryption 164
authentication 63, 88–89, 129, 159, 161–163,
169, 177, 201, 219, 223, 230, 233
autonomic capabilities 56
breaches 63
certificate 166
certificate revocation lists 167
digital signature 89, 128–130, 161, 163–164,
168–169, 172–174, 176–177
DMZ 90, 110, 218, 221, 224
Encryption 89, 129–130, 159–161, 164–167,
169–170, 174, 176–177
Enterprise Privacy Authorization Language 130
enveloping signature 173
EPAL 1.1 130
errant employee programmers 224
federated identity management 130
federated secured user directory 78
firewall 44, 162, 223–224
Gateway-level authentication 219
hacker attacks 108
Kerberos 120, 130–131, 135, 158, 167
Manage 219
message level encryption 159–160
Operation-level authorization 219
password digest 175
PKCS7 176
privacy 63, 130
privacy policies 130
private key 130, 163, 165–166
Proxy authentication 219
public key 163
public key certificate 174
public-private key mechanism 165
RPSS

Reverse proxy security server 63
RSA 117, 119–120, 164, 166
Secure Sockets Layer 158

SHA-1 163
SSL 158
SSL Protocol Version 3.0 148
Transport layer security 171
transport level encryption 159
triple-DES 166
vulnerability to attack 224
Web Trust Association 63
X509PKIPathv1 176

SEI
Service Endpoint Implementation 268,
296–297

self-describing 19
Service Availability 63–64, 216
service broker 40
Services 30, 32, 36

service bus xi, 3, 39, 41, 56, 58–59, 65–66, 90,
96, 101–102, 109–110
service Description 27, 52, 140, 147, 152
service discovery 60–61
service endpoint interface 268, 297
service instance 147
service integration bus 95
service interface 40, 45, 89, 198, 224, 296
service level agreement 72
Service Oriented Architecture xi–xii, 5, 39, 45,
50–52, 54–55, 66, 69, 79–80, 90, 93, 95–96, 98,
177, 183, 217
service Provisioning Markup Language 143
service registry 40, 53
service requestor 40–41, 53, 59, 66, 178, 293

servlet 23
SHA-1 163
signature element 173
Simple Object Access Protocol

see SOAP
Simple Object Access Protocol (SOAP) 1.1 147,
332
simple query 40
single customer view xi
SOA

Service Oriented Architecture xi, 51–60, 62–63,
65–66, 69, 79–80, 88, 93, 95–96, 98, 100–102,
109–111

SOAP
Bindings 36
Body 14, 16–18, 24, 29–30, 32–33, 151,
153–154, 171, 174, 247–250, 304–305,
307–308

346 WebSphere and .Net Interoperability Using Web Services

Document/Literal 18, 20, 30, 33, 149, 282
encodingStyle 15, 18, 151
endpoint 24, 29, 60, 62, 90, 126, 140, 142, 156,
169, 178, 181, 187–188, 209, 216, 218, 222,
268, 275, 297, 300
Endpoint Reference 126
Envelope 14, 17–18, 33, 127–128, 151, 171,
174, 188–189, 247–250, 307–308
EPR 126
extensibility 14, 25, 37, 43, 131, 147, 170, 178
Fault 14, 16–17, 28–30, 126, 150–151,
154–155, 169, 177, 216, 239–240, 249–250,
297, 303–306
Faultactor 17, 151
Faultcode 17, 151, 250
Faultstring 17, 151, 250
header entry 14, 16
interaction patterns 21
operation name 20
part accessors 20
request-response 21–22, 24, 124
response message 21–22
RPC style 18–21
RPC/Encoded 18–19, 149, 151
RPC/Literal 18, 20, 30, 33–34, 149, 282
Service consumers 45, 53, 89, 96, 147
SOAP 1.1 15, 151–152
SOAP 1.2 16, 116
SOAP Body 16, 29, 171, 249
SOAP Envelope 14, 128, 171, 174, 189
SOAP exception 249
SOAP Header 14, 29, 171
SOAP message 12–14, 20, 29, 128, 151,
156–157, 161, 188–189, 248–250
SOAP node 15

SOAP/JMS 189
SOAP/MQ 189
SOAPACTION 22–23
software component 4–5, 39, 41–42, 45–47, 217,
222
Software environments 13–14, 47, 49, 66

Heterogeneity 46, 50–51
solution

architect 5
architecture xi, 67, 83, 91–92
architectures 3, 70
context 69, 72, 84
integration 25
level design 77, 85

Specifications 37
SPML

Service Provisioning Markup Language 143
SQL Servers 192
staffing 71, 85
stand-alone applications 45
Strong Names 193
subsystems 237–238
Sun xiv
Suppliers 41, 47, 56–58, 71, 111
symmetric encryption 164
synchronous 157
System House xiii–xiv, 2, 70, 108
System House Business Scenario 70
Systems Programmer 226

T
TCP/IP 64, 195
Technical approach 78, 88
Technical constraints 69, 76, 85
Test client 207–208, 252, 257–259, 262, 266, 269,
285, 290–292, 299–300, 303
Test Environment 213, 256–258, 320
testers 70
three legged handshake 183
topologies 56, 223
touch point 60, 62
Trading Partner Agreements 139
transaction management 192
Transactional support 79, 181
Transactionality 63–64
Transparency 55, 59–60
transport 29–30, 32, 36
transport level protocol 159
two-phase commit 63, 180
type information 13, 18–20, 24, 36

U
UDDI xii, 6–7, 14, 19, 40, 42–44, 50, 53, 63, 89–90,
116, 135–136, 140, 143, 147–148, 203, 207, 210,
215–217, 219–223
UDDI registry 147, 217
UML

boundary class 235, 237, 245
control class 235, 244–245

underscore for the method attributes 314
Understanding Web services 330
Unified administration 60

 Index 347

unique service name 312
Universal Database DB2 Version 8.1 319
universal description, discovery, and integration

see UDDI
Universal Test Client 207, 257–259
unmanaged environment 47
URI 15, 17, 22–23, 30, 123, 154, 167, 172, 185,
246, 293
URLScan tool 223
Use case

Manage external claim assessor 240–241, 243
use case

realization 234, 244
use case definition 230
use cases xii, 70, 80, 83, 146, 229–232, 240–241,
245
user request 97, 252
UserLand 12
Username Token Profile V1.0 161, 332
Using SOAP Faults 306
UTP-16 127
UTP-8 127

V
Validate claim 76, 78
vendors 4, 24, 37, 45, 49–50, 57, 70, 80, 114, 121,
135, 143, 146, 170, 177, 182–183, 189–190, 204,
217
virtual directory 283
Visual Basic .Net 193–194, 200
Visual Basic scripts 192
Visual C++ 192

W
W3C 7, 11, 27, 35, 41, 116, 120, 122, 124, 128,
135, 155, 164, 166, 247
web application 73, 207, 222, 224–225, 285,
293–294
Web reference 199, 212, 288
Web service

composable 44
interoperable 5, 36, 41, 44, 58, 74, 82–83, 121,
146, 150, 183, 198, 236, 247
language-independent 44

Web service Browser 269
Web service Explorer 267, 269, 275, 293
Web services

addressing information 62

Co-existence 60
consumer 51–52, 96, 114, 127, 140, 147, 152,
216, 221, 293, 311
Deployment 273
MUWS 140
self-contained 40, 44
self-describing 44
specifications 43, 113, 330

Web services Architecture 332
Web services clients 293
Web services description language

see WSDL
Web Services Explorer 270, 295, 301
Web Services Gateway 89–91, 169, 217–220, 222,
226
Web Services Inspection Language 136
Web Services Interoperability Guidance (WSIG)

IBM WebSphere Application Developer 5.1.2
331

Web Services security 219
web.xml 24, 207
webservices.xml 24, 209–210, 212, 268
webservicesclient.xml 210, 212, 269
WebSphere Application Server xi–xii, xiv, 3, 5, 9,
23, 111, 134, 188–192, 203, 206–208, 211–212,
245, 252, 271, 275, 321, 325

Cumulative fix 5.1.1.1 319, 321–322
WebSphere Application Server Network Deploy-
ment 217
WebSphere Application Server Version 5.1.0, Fix-
pack 5.1.1 319
WebSphere Business Integration Adapters 49
WebSphere Business Integration Server Founda-
tion 79, 204
WebSphere MQSeries 2, 41, 55, 64, 70, 121, 134,
188–189, 202, 207
WebSphere MQSeries SOAP Supportpac 330
WebSphere plug-in 218, 222
WebSphere Studio Application Developer xi–xii, 3,
20, 27, 30, 79, 111, 114, 148, 150, 190, 197,
206–207, 209, 211–213, 227, 230, 237, 245,
251–252, 262, 275, 311–315, 324, 328
WebSphere Studio Application Developer 5.1.2
319
Westbridge Technology 119–120
Windows 2003 111, 276, 283, 285, 325
Windows Server 2003 4, 193, 222–223, 276,
320–321
wire format 36

348 WebSphere and .Net Interoperability Using Web Services

workflow 41, 44, 53, 74–75, 77–78, 83, 85–87, 91,
107, 134, 139, 177
work-list 87–88
wrapper 20
WS-Addressing 21, 64, 116, 126, 137, 155–158,
183, 186–188
WS-AT 181
WS-AtomicTransaction 133–134, 180
WS-AtomicTransactions 116, 134
WS-Attachments 116, 127
WS-BaseNotification 117–118
WS-BrokeredNotification 117–118
WS-Business Agreement 133
WS-BusinessActivity 117
WS-CAF 117, 133
WS-Coordination 64, 117, 133–134, 177, 179–180
WS-CTX 117
WSDL

Definitions 31, 36
Document/Literal 18, 20, 30, 33, 149, 282
operation name 20
RPC/Encoded 18–19, 149, 151
RPC/Literal 18, 20, 30, 33–34, 149, 282

WSDL (Web Services Description Language) 2.0
120
wsdl2java 149
WS-Eventing 117, 127
WS-Experience Language 117
WS-Federation

Active Requestor Profile 117
Passive Requestor Profile 117

WS-Federation Language 117
WS-I

Basic Security Profile 1.0 4
conformance 146
conformant consumer 147
conformant service instance 147

WS-I Basic Profile 1.0 118, 143
WS-I Basic Profile 1.1 118, 332
WS-I Basic Profile Version 1.0 332
WS-I Simple SOAP Binding Profile 1.0 118
WSIL 50, 136
WS-Inspection 1.0 118
WS-Manageability 1.0 118
WS-Manageability-Representation 118
WS-Manageablility - Concepts 118
WS-MetadataExchange 118, 137
WS-Notification 117–118, 126–127, 137
WS-Policy 35, 37, 119, 130, 135, 137, 183, 201

WS-PolicyAssertions 119, 135
WS-PolicyAttachments 119
WS-PolicyFramework 119
WS-Privacy 130
WS-Provisioning 119, 143
WS-RM 119, 134
WSRP 1.0 119
WS-SecureConversation 119, 131, 201
WS-Security 4, 80–81, 109, 119, 129, 131,
161–164, 166–170, 175, 177, 183, 186, 201,
211–212, 219, 229–230
WS-Security 2004 119
WS-Security Drilldown in Web services Enhance-
ments 2.0 331
WS-Security Kerberos Binding 120
WS-SecurityPolicy 119, 130, 201
WS-Topic 126
WS-Topics 117–118
WS-Transaction 181
WS-Transaction 1.0 120
WS-Trust 120, 130–131, 201
WS-TXM 117
WSXL 117
WX-CF 117

X
X.509 Token Profile V1.0 161, 332
X509PKIPathv1 176
XML Binary Optimized Package 128
XML infoset 128
XML schemas 18, 24, 36, 53, 121
XOP 128
XSD 23, 33, 35–36, 123, 212, 246–250, 304,
306–308
XSDs 36, 122

Z
zones 98

 Index 349

350 WebSphere and .Net Interoperability Using Web Services

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

W
ebSphere and .Net Interoperability Using W

eb Services

®

SG24-6395-00 ISBN 0738492302

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere and .Net
Interoperability
Using Web Services

Examples and
guidance for building
interoperable Web
services

Roadmap to Web
services
specifications

Using
Service-Oriented
patterns

IBM and Microsoft are strong supporters of the Web Services
Interoperability Organization’s (WS-I) efforts to make building
solutions using software from different suppliers a reality. In this IBM
Redbook, we take a practical look at building a solution with IBM
WebSphere and Microsoft .Net components using Web services that
are compliant with the WS-I organization’s Basic Profile.

This redbook is aimed at customers who want to know how far the
reality of Web services has caught up with the hype; it is for
customers who want a redbook to help them decide whether Web
services are right for them now.

The book provides an introduction to SOAP, WSDL and the rest of the
Web services concepts. It provides a review of the many Web service
specifications. Which ones are most important to building a practical
solution?

We use a scenario based on work IBM has been doing with the
insurance industry to demonstrate how to design a service-based
solution and then implement it using the latest programming tools
from IBM and Microsoft.
Based on our experience, we identify areas where extra effort up
front will be rewarded with an easier implementation.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Background of this book
	1.1.1 The scenario
	1.1.2 Use of Web services
	1.1.3 Other approaches to interoperability
	1.1.4 WS-I
	1.1.5 Audience
	1.1.6 Terminology

	Part 1 Introduction to Web services
	Chapter 2. SOAP primer
	2.1 What is SOAP?
	2.2 SOAP components
	2.3 What is in a SOAP message?
	2.3.1 Headers
	2.3.2 Body
	2.3.3 Fault

	2.4 Message styles
	2.4.1 RPC-Style
	2.4.2 Document-Style
	2.4.3 Document/Wrapped

	2.5 SOAP interaction styles
	2.5.1 Request-response
	2.5.2 One-way

	2.6 SOAP implementations over Http:
	2.6.1 Microsoft .Net SOAP request over Http
	2.6.2 IBM WebSphere Application Server SOAP request over Http:

	2.7 Summary: Salient interoperability features of SOAP

	Chapter 3. WSDL primer
	3.1 Structure of WSDL definitions
	3.2 Examples of WSDL definitions
	3.2.1 Document/Literal Style
	3.2.2 RPC/Literal Style

	3.3 Future considerations
	3.4 Summary: salient interoperability features of WSDL

	Chapter 4. Web services primer
	4.1 Web services concepts
	4.1.1 What is a Web service?
	4.1.2 Web services technologies
	4.1.3 Web service properties

	4.2 Web services and component architectures
	4.2.1 Choosing between Web services and software components

	4.3 Service-Oriented Architecture
	4.3.1 Components of a Service-Oriented Architecture
	4.3.2 Services and Web services

	4.4 Web services and the Enterprise Service Bus
	4.4.1 Transparency
	4.4.2 Interoperability
	4.4.3 Unified service discovery and addressing
	4.4.4 Coexistence
	4.4.5 Single point of control
	4.4.6 Security
	4.4.7 Robustness
	4.4.8 Scalability
	4.4.9 Problem determination
	4.4.10 Conclusions: Web services, the ESB and service buses

	4.5 Summary

	Part 2 Web services interoperability
	Chapter 5. Business scenarios
	5.1 Business scenarios overview
	5.2 Mergers and Acquisitions
	5.2.1 Business goals
	5.2.2 Solution context
	5.2.3 Current IT infrastructure
	5.2.4 Technical constraints
	5.2.5 Solution level design
	5.2.6 Technical approach
	5.2.7 Target IT infrastructure

	5.3 External claims assessor management
	5.3.1 Business goals
	5.3.2 Solution context
	5.3.3 Current IT infrastructure
	5.3.4 Technical constraints
	5.3.5 Solution level design
	5.3.6 Technical approach
	5.3.7 Target IT infrastructure

	5.4 Summary

	Chapter 6. Interoperability patterns
	6.1 The Patterns for e-business layered asset model
	6.2 SOA approach and Patterns for e-business
	6.2.1 Business::Self-Service pattern
	6.2.2 Extended Enterprise business pattern
	6.2.3 Discussion of patterns and Web services

	6.3 Applying Interoperability patterns
	6.3.1 Mergers and Acquisitions scenario

	6.4 Summary
	6.5 Where to find more information

	Chapter 7. Web services roadmap
	7.1 Introduction
	7.2 List of Web services specifications
	7.3 Summary of the Web services architecture stack
	7.3.1 Foundations
	7.3.2 Messaging
	7.3.3 Security
	7.3.4 Transacted
	7.3.5 Meta-data
	7.3.6 Resources
	7.3.7 Composition
	7.3.8 Management
	7.3.9 Provisioning
	7.3.10 WS-I

	7.4 Summary

	Chapter 8. Web service specifications
	8.1 Web service Interoperability Organization (WS-I)
	8.2 WS-I Basic Profile 1.0
	8.2.1 Basic Profile 1.0 for WebSphere
	8.2.2 Basic Profile 1.0 for Microsoft .Net
	8.2.3 Summary

	8.3 Interoperability standards: addressing
	8.3.1 Insurance example
	8.3.2 Summary

	8.4 Security
	8.4.1 Why do we need more security specifications?
	8.4.2 WS-Security 2004
	8.4.3 WS-I Security Profile
	8.4.4 Summary

	8.5 WS-Coordination
	8.6 WS-Transactions
	8.6.1 WS-Transaction in a WebSphere environment
	8.6.2 WS transaction in a Microsoft .Net environment

	8.7 Reliable messaging
	8.7.1 What is WS-ReliableMessaging?
	8.7.2 The three legged handshake protocol
	8.7.3 WS-ReliableMessaging Protocol
	8.7.4 Reliable messaging requirements

	8.8 SOAP/JMS and SOAP/MQ
	8.8.1 Interoperability of SOAP/JMS and SOAP/MQ

	Chapter 9. Web services in Microsoft .Net and WebSphere
	9.1 Microsoft .Net architecture
	9.1.1 Microsoft .Net Web service application architecture
	9.1.2 Developing software using Microsoft Visual Studio .Net 2003
	9.1.3 Microsoft secure Web services implementation

	9.2 WebSphere Java 2 Enterprise Edition architecture
	9.2.1 Java 2 Enterprise Edition Web service architecture
	9.2.2 Developing J2EE applications using WebSphere Studio Application Developer
	9.2.3 IBM secure Web services implementation
	9.2.4 Summary

	Chapter 10. Deploying Web services
	10.1 Overview
	10.1.1 Web services publishing

	10.2 WebSphere Web services deployment model
	10.2.1 Web Services Gateway
	10.2.2 IBM UDDI registry
	10.2.3 Deployment architecture

	10.3 Microsoft .Net Web service deployment model
	10.3.1 Microsoft UDDI registry
	10.3.2 Deployment architecture

	10.4 Summary

	Part 3 Claims scenario
	Chapter 11. Designing the scenarios
	11.1 Mergers and Acquisitions scenario
	11.1.1 Use cases overview
	11.1.2 Actors
	11.1.3 Use case 001: Register claim
	11.1.4 Realizing the use case

	11.2 External Claims Assessors scenario
	11.2.1 Use cases overview
	11.2.2 Actors
	11.2.3 Use case 002: Manage external claim assessors
	11.2.4 Realizing the use case

	11.3 Claim applications: table schema
	11.4 XML schema data types as common denominator
	11.4.1 Data type mapping
	11.4.2 SOAP message for registerClaim()
	11.4.3 SOAP message for findCustomer()
	11.4.4 SOAP exception for findCustomer()

	11.5 Summary

	Chapter 12. Building the claims scenario
	12.1 Building the scenario for WebSphere
	12.1.1 Problem definition
	12.1.2 Solution
	12.1.3 Import Enterprise JavaBeans
	12.1.4 Test imported Enterprise JavaBeans
	12.1.5 Create a Web service from Enterprise JavaBeans
	12.1.6 Test the created Web service
	12.1.7 Deploy the created Web service

	12.2 Building the scenario for Windows Server 2003
	12.2.1 Prerequisites to run the Web service application
	12.2.2 Create the Web Service
	12.2.3 Import the existing classes
	12.2.4 Build the Web service
	12.2.5 Microsoft Internet Information Services (IIS)
	12.2.6 Create Microsoft .Net Test Client
	12.2.7 Summary

	12.3 Building the Web services clients
	12.3.1 Web service client for the WebSphere Web service
	12.3.2 Web service client for the Microsoft .Net Web service
	12.3.3 Microsoft .Net
	12.3.4 Differences between the two Web services and conclusions

	Chapter 13. Web service interoperability implementation guidance
	13.1 Web service interoperability guidance
	13.2 WebSphere client
	13.3 WebSphere Web service
	13.4 Microsoft .Net client
	13.5 Summary

	Part 4 Appendixes
	Appendix A. Installation and setup
	Installation planning for the WebSphere environment
	WebSphere Application Server V5.1.1.1 requirements
	Installing WebSphere Application Server 5.1.1.1
	Installation of Application Developer 5.1.2

	Installation planning for the Microsoft .Net environment

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading and running the Web material

	How to use the Web material

	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Abbreviations and acronyms
	Index
	Back cover

